• 热门标签

当前位置: 主页 > 航空资料 > 国外资料 >

时间:2012-03-16 12:23来源:蓝天飞行翻译 作者:航空
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

APPENDIX C - COMMUNICATIONS
Page C-7
CDL terminals typically support full duplex, jam-resistant, secure digital communications in either X or Ku-band at selectable data rates ranging from 0.2-2 Mbit/s on the forward link (command/control data) and with return link (sensor data) rates from 10-274 Mbit/s.  In recent years, CDL applications have been extended to a variety of manned and unmanned tactical platforms, fueled by affordability advances led by the tactical common data link (TCDL) program which introduced intermediate-level performance and interoperability at the lower (< 45 Mbit/s) CDL data rates.  Continuing advances and leveraging of commercial microelectronics have since extended similar technology-cost advantages to full-rate CDL applications. Although most CDL applications employ point-to-point radio links between the ISR collection platform and processing terminal, emerging applications entail point-to-multipoint (simplex/broadcast) operations to multiple receive-only terminals.  Additional ongoing CDL capability enhancements include:
.  
Increased forward and return link data rates (up to 45 Mbit/s, 1096 Mbit/s respectively) to address evolving forward link applications and bandwidth demands posed by high performance hyper-spectral and multi-sensor platforms.

.  
Enhanced point-to-multipoint capabilities providing full duplex, low-latency network communications between a central (collection or fusion) node and its multiple (sensor or user) client nodes.

.  
Advanced Waveforms providing variable bandwidth on demand (ranging from 10Kbit/s – 274 Mbit/s), optimized for IP-based data transfer, and enhanced RF link range/weather/jamming performance.

.  
System architecture/software migration to JTRS SCA compliance.  Although envisioned objective capabilities pose software/waveform portability and interoperability advantages, current JTRS technology base and associated performance does not currently meet user and system throughput requirements.

.  
Transition to IP-based user interfaces.  Historically, CDL based systems were not networked on either the air or surface ends of the link. The approach taken by the platform/ integrating contractor towards integration of multiple sensors/functions into the CDL interface would generally entail optimization for the specific program application, although often at the expense of compounding or precluding interoperability with other programs/Services.  Custom conventions generally would entail the methods by which multi-sensor data would be multiplexed external to CDL and bit-stuffing or other means by which the aggregate would be bandwidth matched to the one or multiple CDL synchronous channels. The recent trend within CDL, now motivated by the OSD mandate, requires the provision of an IP-based CDL user interface to the platform.  This should effectively eliminate custom platform integration conventions helping to establish CDL as part of a seamless GIG communications infrastructure.
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:无人机系统路线图 Unmanned Aircraft Systems Roadmap(114)