曝光台 注意防骗
网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者
天气现象,严重危害航空活动安全。据波音公司Taylor(1993)P
[1]
P对1964 年至1985 年间美国
失事飞机统计,因低空风切变造成26 件失事,3 件意外事件,造成约600 人死亡,200 人
受伤,1979—1989 年间美国地区因低空风切变因素发生飞行事故有13 起,死亡人数达455
人。低空风切变现象的时间短、尺度小、强度大的特点,带来探测难、预报难、管制难、飞
行难等一系列的困难。
自改革开放以来,国内新建机场速度加快,但是囿于机场选址和机场设计等相关因素,
一些新建机场由于地形、气候等特点存在风切变多发而又缺少风切变探测设施来进行探测的
问题。另外,近二十年国内民航运输总量也呈爆炸性增长,使得飞行密度增长很快,在一些
繁忙的机场,尤其是一些沿海的繁忙机场多次收到飞机风切变报告,严重影响飞行安全。这
使得我们要把建设低空风切变的探测设施和加强风切变预报的工作提上议事日程。
1 低空风切变的探测
我们首先要把关注点放在低空风切变的探测上。目前,国外对于风切变的探测一般都
基于利用相关的设施来进行探测空间风场的变动情况,为即将遇到低空风切变的飞机提供警
报或预报服务。这些探测手段包括多普勒雷达探测、风廓线仪探测、低空风切变告警系统、
多普勒激光雷达探测、以及集成的业务化风切变警报系统等。
1.1 机场多普勒天气雷达探测
多普勒天气雷达是利用物理学上的多普勒效应来测定降水粒子的径向运动速度。当降
水粒子相对雷达发射波束相对运动时,可以测定接收信号与发射信号的高频频率之间存在的
差异,通过计算可以测定出降水粒子相对于雷达的速度,并通过一定的数值模型下反演出大
2
气风速分布、大气风场、气流垂直速度的分布以及湍流情况等。利用对反演出的风速分布和
风场的变化情况设定一定的阈值,就能测定是否会发生低空风切变。
由于多普勒雷达是测速雷达,对于对流系统临近机场或水汽条件适合的情况下,机场
天气多普勒雷达在探测微下击暴流和积雨云所伴随的低空风切变有着相当大的优势,国内外
在这方面的应用也比较成熟。例如,印度Kolkata热带气旋中心P
[2]
P和香港机场的多普勒天气
雷达P
[3]
P都有一些这方面的例子。
但是,由于机场多普勒雷达所测风速是相对于雷达的径向速度,实际风场速度需要算
法反演,目前世界上还没有一种完美多普勒天气雷达反演风场的算法,这给实际探测出来的
风场就带来了误差。此外,由于多普勒雷达发射电磁波的属性限制,使得多普勒雷达探测风
场的实际范围较小,探测风场的精度也随着远离雷达天线地点逐渐变差,小尺度的风切变常
常将被忽略,因此,用于探测实时的低空风切变要求雷达对着机场范围进行扫描,由于国内
多普勒雷达的选址受到种种限制,使得多普勒天气雷达不能直接应用于跑道范围,这给应用
带来了难度。另外,由于多普勒天气雷达原理是测量降水粒子,对于探测晴空低空风切变是
设备的盲点。最后,分析低空风切变需要专业人员的操作,因为雷达发射信号的高度、角度
都直接影响到探测的效果。
1.2 风廓线仪
风廓线仪可测量风的垂直廓线,它能一天24 小时不间断地工作。它是一种基于相控阵
原理的脉冲多普勒雷达,用于跟踪大气折射指数变化。而大气折射指数变化是由大气湍流产
生的。随着风场变化,风廓线雷达发射脉冲的后向散射功率也变化。在对流层的下部,折射
指数不均匀性主要由湿度变化导致。雷达的平均发射功率与天线面积的乘积决定了雷达的最
大探测范围。风廓线雷达测量到的多普勒速度与对流性湍流本身有关。它测量雷达波束方向
上的径向风速分量。至少要在三个独立方向上测量风的三个径向分量。风廓线雷达发射高能
脉冲(一束朝站点的垂直向上方向,另外两束与垂直向上有一定的偏角),接收由不均匀大
气后向散射的回波。该回波经过放大后,采用适当的技术对信号进行处理,便得到风的垂直
廓线。
相比多普勒天气雷达系统,风廓线仪可以在晴空的情况下监测某处的垂直风场分布,但
由于单部风廓线仪只能监测其上空的风的情况,只有将多部风廓线仪进行联网才能得到整个
机场区域的垂直风场分布,这有相当的局限性,目前我们只能在选址上考虑单部风廓线仪的
合适位置。另外,其风切变告警功能依赖于当地实际情况需要,需要对一定时间的低空风切
变事件发生情况进行统计后才能进行设置。
1.3 低空风切变预警系统
低空风切变预警系统(low level wind shear alert system简称LLWAS)是美国等国
家普遍采用装于机场,用于直接提供低空风切变预警信息的设施。第一代低空风切变警告系
统是美国联邦航空局(FAA)在1970 年代开发出来用于探测大尺度的天气系统,包括海陆风
锋面(sea breeze fronts)、阵风锋面(gust fronts)、冷锋(cold fronts)以及暖锋(warm
fronts)造成低空风切变的子系统。研发是在1975 年美国东方航空66 号航班在纽约市肯尼
迪国际机场降落时失事后开始的,当时飞机遇到海风和雷雨外流(thunderstorm outflow)
交互作用产生的风变(wind shift)。phase-1 LLWAS系统探测低空风切变的原理是把位于跑
道中段一个测风传感器得到的风场资料与在机场四周安装的五个测风传感器得到的风场资
料加以比较,当风的向量差达15 海里/小时以上时,塔台管制员就将每一测风传感器的测风
资料,直接告诉起降的飞机,飞行员收到各测风传感器的测风资料后,自行计算顶风或顺风
分量。这套系统由于各测风传感器距离太大,无法探测到较小尺度的风切变,因此,1983 年
FAA要求美国国家大气研究中心(NCAR)另外开发一套更新系统,期望系统可以探测小尺度
的微下击暴流(microbursts),于是NCAR在1983—1988 年开发出一套加强型系统(phase-II
3
LLWAS),系统通过计算顶风或顺风强度,来探测位于跑道或跑道两端距离机场1—3 海里的
低空风切变或小尺度微下击暴流,可以探测到90%以上的低空风切变,但还有10%以下的低
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:
空管资料5(64)