曝光台 注意防骗
网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者
2
2 i,UDRE UDRE fc rrc ltc er UDRE
i,flt 2 2 2 2 2
i,UDRE UDRE fc rrc ltc er UDRE
[( ) ( ) + + + + ] , if RSS = 0 (Message Type 10)
[( ) ( )] + + + + , if RSS = 1 (Message Type 10)
σ = ⎧⎨⎪ σ δ ε ε ε ε
σ δ ε ε ε ε ⎪⎩
where
if using message Type 27, δUDRE is a region-specific term as defined in section 3.5.4.9,
if using message Type 28, δUDRE is a satellite-specific term as defined in section 3.5.5.6.2.5,
if using neither message, δUDRE = 1.
If fast corrections and long-term corrections/GEO ranging parameters are not applied, and degradation parameters are not
applied:
σ2
i,flt = [(σi,UDRE) (δUDRE) + 8m]2
If fast corrections or long-term corrections/GEO ranging parameters are not applied to a satellite, or if an ephemeris
covariance Type 28 message has not been received for the satellite but an active Type 28 message has been received for a
different satellite:
σ2
i,flt = (60)2m2
3.5.5.6.2.1 Fast correction degradation. The degradation parameter for fast correction data is:
2
u lat
fc
a(t t t )
2
− +
ε =
where
t = the current time;
tu = (UDREIi reference time): if IODFj ≠3, the start time of the SNT 1-second epoch that is coincident with the start
of the transmission of the message block that contains the most recent UDREIi data (Type 2 to 6, or Type 24
messages) that matches the IODFj of the fast correction being used. If IODFj = 3, the start time of the epoch of
the SNT 1-second epoch that is coincident with the start of transmission of the message that contains the fast
correction for the ith satellite; and
tlat = (as defined in 3.5.4.7).
Note.— For UDREs broadcast in Type 2 to 5, and Type 24 messages, tu equals the time of applicability of the fast
corrections since they are in the same message. For UDREs broadcast in Type 6 message and if the IODF = 3, tu also equals
the time of applicability of the fast corrections (t0f). For UDREs broadcast in Type 6 message and IODF ≠ 3, tu is defined to
be the time of transmission of the first bit of Type 6 message at the GEO.
Annex 10 — Aeronautical Communications Volume I
23/11/06 APP B-56
3.5.5.6.2.2 Range rate correction degradation
3.5.5.6.2.2.1 If the RRC = 0, then εrrc = 0.
3.5.5.6.2.2.2 If the RRC ≠ 0 and IODF ≠ 3, the degradation parameter for fast correction data is:
current previous
rrc fc rrc
0f current previous
0, if (IODF IODF )MOD3 = 1
aI B
(t t ), if (IODF IODF )MOD3 1
4 t
− ⎧⎪
ε = ⎨⎪⎩⎛⎜⎝ + Δ ⎞⎟⎠ − − ≠
3.5.5.6.2.2.3 If RRC ≠ 0 and IODF = 3, the degradation parameter for range rate data is:
fc
fc
rrc
rrc fc
0f
I
0, if t 0
2
a t I
2 B (t t ), if tI 0
2 t 2
⎧
Δ − = ⎪⎪⎪
ε = ⎨⎪⎛⎜ Δ − ⎞⎟
⎪⎪⎜⎜ + Δ ⎟⎟ − Δ − ≠
⎩⎪⎪⎜⎝ ⎟⎠
where
t = the current time;
IODFcurrent = IODF associated with most recent fast correction;
IODFprevious = IODF associated with previous fast correction;
Δt = ti,0f – ti,0f_previous; and
Ifc = the user time-out interval for fast corrections.
3.5.5.6.2.3 Long-term correction degradation
3.5.5.6.2.3.1 Core satellite constellation(s)
3.5.5.6.2.3.1.1 For velocity code = 1, the degradation parameter for long-term corrections of satellite i is:
εltc = Cltc_lsb + Cltc_v1 max (0,ti,LT – t,t – ti,LT – Iltc_v1)
3.5.5.6.2.3.1.2 For velocity code = 0, the degradation parameter for long-term corrections is:
ltc
ltc ltc _ v0
lt v0
t t
C
I −
⎡ − ⎤
ε = ⎢ ⎥
⎣ ⎦
where
t = the current time;
tltc = the time of transmission of the first bit of the long-term correction message at the GEO; and
[x] = the greatest integer less than x.
3.5.5.6.2.3.2 GEO satellites. The degradation parameter for long-term corrections is:
εltc = Cgeo_lsb + Cgeo_v max (0,t0,GEO – t,t – t0,GEO – Igeo)
where t = the current time.
Appendix B Annex 10 — Aeronautical Communications
APP B-57 23/11/06
3.5.5.6.2.4 Degradation for en-route through non-precision approach
er
er,
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:
附件10--航空电信an10_v1_6ed上(121)