曝光台 注意防骗
网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者
egion shape: an indication of whether a region is a triangle or quadrangle.
oordinate 2 longitude. If region is a quadrangle, Coordinate 4
as Coordinate 2 latitude and Coordinate 1 longitude. Region boundary is formed by joining coordinates in the sequence
nts have either constant latitude, constant longitude, or
constant slope in degrees of latitude de or longitude along any boundary
segment between two coordinates is less than ±180 degrees.
Note 2.— All parameters are broadca message.
ing: 0 = GLONASS tim
G
the SBAS network time.
i,GLONASS
U 1SNT 0SNT 0t t LS LSF LSF
the SBAS parameters relate SNT to UTC time, rather than GPS time.
Note.— All parameters are broadcast in Type 12 message.
3.5.4.9 Service region parameters. Service region parameters shall be as follows:
Is
ber of service messages: the number of different Type 27 SBAS service mess
S
messages (from 1 to number of service messages, coded with an offset of 1).
N
rity code: an indication of a message precedence if two messag
RE indicator-inside: an indication of regional UDRE degradation factor (δUD
δ
regions defined in all current Type 27 messages, in accorda
Coordinate latitude: the latitude of one corner of a region.
Coordinate longitude: the
R
Coding: 0 = triangle
1 = quadrangle
Note 1.— Coordinate 3 has Coordinate 1 latitude and C
h
1-2-3-1 (triangle) or 1-3-2-4-1 (quadrangle). Boundary segme
per degree of longitude. The change in latitu
st in Type 27
APP B-47 23/11/06
Annex 10 — Aeronautical Communications Volume I
Table B-36. δUDRE indicator ev ation
δUDRE icator δ
alu
ind UDRE
0 1
1 1
1
1
12 30
13 40
14 50
15 100
.1
2 .25
3 .5
4 2
5 3
6 4
7 5
8 6
9 8
10 10
11 20
3.5.4.10 Clock-ephemeris covariance matrix parameters. Clock-ephemeris covariance matrix parameters shall be as
Sca the Cholesky factorization elements.
holesky factorization elements (E ): Elements of an upper triangle matrix which compresses the information in the clock
and ephemeris covariance rential range estimate (UDRE)
degradation factor (δUDRE) as a function of user position.
.5 DEFINITIONS OF PROTOCOLS FOR DATA APPLICATION
Note.— This section provides definitions of parameters used by the non-aircraft or aircraft elements that are not
ssary to ensure interoperability of SBAS, are used to determine the navigation solution
nd its integrity (protection levels).
3.5.5.1 GEO
position estimate. The estimated position of a GEO at any time tk is:
follows:
PRN mask number: see 3.5.4.1.
le exponent: A term to compute the scale factor used to code
C i,j
matrix. These elements are used to compute the user diffe
3.5
transmitted. These parameters, nece
a
POSITION AND CLOCK
3.5.5.1.1 GEO
G G G G
2
G G G 0,GEO G 0,GEO
G G G G Z⎢
⎣ ⎥⎦
ˆX
X X X
Yˆ Y Y (t t ) 1Y (t t )
2
ˆ Z Z Z
⎢⎢⎢⎡ ⎥⎥⎥⎤=⎢⎣⎢⎢⎡ ⎥⎦⎥⎥⎤+⎢⎣⎢⎢⎡ ⎥⎦⎥⎥⎤ − + ⎢⎣⎢⎢⎡ ⎥⎦⎥⎥⎤ −
23/11/06 APP B-48
Appendix B Annex 10 — Aeronautical Communications
3.5.5 .2 GEO clock correction. The clock .1 correction for a SBAS GEO satellite i is applied in accordance with the
llo e a
ΔtG
where
tG
= GEO code phase time at transmission of message; and
ΔtG = GEO code phase offset.
3.5.5.1.2.1 GEO code phase offset (ΔtG) at any time t is:
ΔtG = aGf0 + aGf1 (t – t0,GEO)
where (t – t0,GEO) is corrected for end-of-day cro
.5.5.2 LONG-TERM CORRECTIONS
.2.1 P satellite i is applied in accordance with the following
t = tSV,i – [(ΔtSV,i)L1 + δΔtSV,i]
here
t = SBAS network time;
satellite PRN code phase offset as defined in 3.1.2.2; and
δΔtSV,i = the code phase offset correction.
3.5.5.2.1.1 The clock time error estimate (δΔtSV,i) for a GPS or SBAS satellite i at any time of day tk is:
δΔtSV,i = δai,f0 + δai,f1 (tk – ti,LT)
.2.2 GLO S satellite i is applied in accordance with the
t = tSV,i + τn(tb) – γn(tb)(tSV,i – tb) – δΔtSV,i
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:
附件10--航空电信an10_v1_6ed上(117)