• 热门标签

当前位置: 主页 > 航空资料 > 国外资料 >

时间:2010-05-10 19:29来源:蓝天飞行翻译 作者:admin
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

use. To ensure standardization and safety of this equipment, the FAA plays a key role in the development and
works closely with industry in this process. The avionics
development process results in safe, standardized SAT-
NAV avionics, developed in concurrence with industry.
Due to the growing popularity of SATNAV and potential
new aviation applications, there are several types of
GPS-based receivers on the market, but only those that
pass through this certification process can be used as
approved navigation equipment under IFR conditions.
Detailed information on GPS approach procedures is
provided in Chapter 5–Approach.
GPS-BASED HELICOPTER OPERATIONS
The synergy between industry and the FAA created during the development of the Gulf of Mexico GPS grid
system and approaches is an excellent example of what
can be accomplished to establish the future of helicopter
IFR SATNAV. The Helicopter Safety Advisory Council
(HSAC), National Air Traffic Controllers Association
(NATCA), helicopter operators, and FAA Flight
Standards Divisions all worked together to develop this
infrastructure. The system provides both the operational
and cost-saving features of flying direct to a destination
when offshore weather conditions deteriorate below
VFR and an instant and accurate aircraft location capability that is invaluable for rescue operations.
The expansion of helicopter IFR service for emergency
medical services (EMS) is another success story. The
FAA worked with EMS operators to develop helicopter
GPS nonprecision instrument approach procedures and
en route criteria. As a result of this collaborative effort,
EMS operators have been provided with hundreds of
EMS helicopter procedures to medical facilities. Before
the GPS IFR network, EMS helicopter pilots had been
compelled to miss 30 percent of their missions due to
weather. With the new procedures, only about 11 percent of missions are missed due to weather.
The success of these operations can be attributed in large
part to the collaborative efforts between the helicopter
industry and the FAA. There are currently 289 special
use helicopter procedures, with more being added. There
are also 37 public use helicopter approaches. Of these,
18 are to runways and 19 are to heliports or points-inspace (PinS).
REDUCED VERTICAL SEPARATION MINIMUMS
The U.S. domestic reduced vertical separation minimums (DRVSM) program has reduced the vertical
separation from the traditional 2,000-foot minimum
to a 1,000-foot minimum above FL 290, which allows
aircraft to fly a more optimal profile, thereby saving
fuel while increasing airspace capacity. The FAA has
implemented DRVSM between FL 290 and FL 410
(inclusive) in the airspace of the contiguous 48 states,
Alaska, and in Gulf of Mexico airspace where the FAA
provides air traffic services. DRVSM is expected to
result in fuel savings for the airlines of as much as $5
billion by 2016. Full DRVSM adds six additional usable
altitudes above FL 290 to those available using the former
vertical separation minimums. DRVSM users experience
increased benefits nationwide, similar to those already
achieved in oceanic areas where RVSM is operational. In
domestic airspace, however, operational differences create unique challenges. Domestic U.S. airspace contains a
wider variety of aircraft types, higher-density traffic, and
an increased percentage of climbing and descending traffic. This, in conjunction with an intricate route structure
with numerous major crossing points, creates a more
demanding environment for the implementation of
DRVSM than that experienced in applying RVSM on
international oceanic routes. As more flights increase
demands on our finite domestic airspace, DRVSM helps
to reduce fuel burn and departure delays and increases
flight level availability, airspace capacity, and controller
flexibility.
FAA RADAR SYSTEMS
The FAA operates two basic radar systems; airport
surveillance radar (ASR) and air route surveillance
radar (ARSR). Both of these surveillance systems use
primary and secondary radar returns, as well as
sophisticated computers and software programs
designed to give the controller additional information,
such as aircraft speed and altitude.
AIRPORT SURVEILLANCE RADAR
The direction and coordination of IFR traffic within
specific terminal areas is delegated to airport surveillance radar (ASR) facilities. Approach and departure
control manage traffic at airports with ASR. This radar
system is designed to provide relatively short-range
coverage in the airport vicinity and to serve as an expeditious means of handling terminal area traffic. The
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:Instrument Procedures Handbook (IPH)仪表程序手册下(20)