曝光台 注意防骗
网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者
for designing training courses which effectively acknowledges
this. This method facilitates analysis of the
operating environment into functional tasks, so allowing
training to be targeted at these functions. They are in effect
mainly cognitive tasks required to be completed in
various circumstances by the pilot.
Current training approaches are more task-based and
scenario-based. They attempt to bring the trainee in a
situation which resembles the real operational world and
to present him or her with training tasks which are closely
related to the real operational world, training and working
come closer together. A didactic method of realizing this
is for example asking the trainee to start a subsystem in
the aircraft by clicking on buttons on the screen showing
the control panel.
While training in complex technical and operational
domains is moving towards more task-based approaches,
at the same time, it is more and more acknowledged that
learning does and should not stop right after a course, but
should be integrated in the working life of modern operators.
At present, initial training at Airbus for pilots converting
to a new type of aircraft consists of 25 or 26 days of
intensive training. By the end of this training, the pilot
should have reached a suitable standard to be capable of
basic aircraft operations. In practice this is the beginning
of the actual learning process, and the process of becoming
a proficient operator involves continuous learning
throughout a career. The learning process is therefore inherently
a function of operations, and both operations and
training should be considered as one, and not separate
functions. Training and learning therefore take place in:
32 HCI-Aero 2002
• an initial learning phase, where a basic operation is
learned to enable the pilot to conduct safe flight, which
enables:
• ongoing learning “on the job”, which never ceases.
Although there is a need for an initial intensive learning
phase, there is no reason why the same basic learning
principles should not apply to both phases. Indeed if the
documentation used in both is the same, “operational
learning” is facilitated both for the individual and the organizational
structure required to promote it. Training
materials are then performance support tools. If this approach
to operations is taken, then operational material
should be presented in such a way as to be easy to learn,
and training material should be as close to operational
material as possible.
Architecture of Articulation
The main question is: how to develop an architecture for
articulated operational and training material which serves
both the advantages of efficient development while serving
also the different goals of operations and training most
effectively?
The underlying structure of the proposed architecture
starts with a database of documentary units (Payeur 2001).
Documentary units are small, consistent elements of information.
They may consist of texts, pictures, schematics,
animations, interactive elements, and so on. Documentary
units can be hierarchically organised, allowing having
several versions of one unit. This might for example be the
case when there are different variations in aircraft systems.
This means that each airline can have an FCOM, which
consists of documentary units, which are geared towards
their own fleet. Documentary units enable easy and quick
modification. As information in the FCOM is complex,
many modifications will be made during the lifetime of an
aircraft type. Modifying the FCOM will mean modifying
the relevant documentary unit and installing a continuous
web-based mechanism for publicizing the new version.
The airlines can download the units and thus modify their
FCOMs. The documentary units have tags, meta-data, attached
to them. These meta-data concern administrative
aspects, such as for which specific type of aircraft they are
meant, and which sub-system they concern, and so on..
The system should provide capabilities for adding contextual
information that would enable appropriate search,
retrieval and understanding. Examples of contexts are
phase of flight, weather conditions, failures, and so on.
Documentary units contain various kinds of information
that may be superficial, e.g., telling how to turn off a subsystem,
or very detailed, e.g., giving exact data about the
performance limits of a subsystem.
The information of the FCOM is categorized on three
levels (Blomberg, Boy, and Speyer 2000). These levels are
becoming a standard for the FCOM. Level 1 contains
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:
航空资料11(78)