• 热门标签

当前位置: 主页 > 航空资料 > 国外资料 >

时间:2010-08-14 03:01来源:蓝天飞行翻译 作者:admin
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

Kanki 2000) on the overall organization of documents
(such as merging and reducing the number of manuals)
and on standardization of information in different manuals.
HCI-Aero 2002 31
Differences and Commonalities
Differences between Operational and Training
Documentation
An easy solution seems to be to have just one FCOM,
used both in training and in operations. In principle, there
are no major technical constraints to have a full integration
of FCOM and courseware. The basic question to be addressed
is: should there be a fundamental difference between
the electronic documentation for training and for
operations? In operations, the most important thing is to
get quickly the correct answer on the question "What
should I do in this situation and how?" In operations the
pilot needs quick access. The content should be concise;
you do not always need all kinds of animations for example.
Information may sometimes be more specific for operations
than for training. For example, trainees do not
need to know the exact values of all kinds of parameters
that could be provided in a courseware. However, pilots
might want to look-up the exact figures in operations.
In training, knowledge about the system has to be builtup
step-by-step. A pedagogically sound way of presenting
information is essential. It is the first time the trainee goes
through a large part of the FCOM information. Courseware
is intended to introduce and explain. During learning,
trainees build a mental image of a certain part of the information;
they do not need to know the complete picture
to start with. Only later on, they have to acquire a complete
view. The objective of the courseware is to give information
to the trainees to enable them to acquire this
view. After the training, they have the information in the
FCOM as a reminder. It is important to learn to refer to the
FCOM, because a pilot cannot have everything exact and
directly accessible in his or her head at any time.
In addition, both in operations and in training, complete
detailed information should be available for reference purposes.
The courseware is currently structured in a linear
manner. It builds up knowledge very carefully, starting
with explaining the system in a functional way, going to
normal operations and next to abnormal operations, aiming
to explain the working of the systems, giving summaries
and quizzes. This is a different model than the one of
the FCOM, which aims at finding the right amount and
level of information in a specific context.
In summary: two elements are important to consider, in
which courseware and operational documentation differ:
• The interactive didactic element in the courseware: the
questions asked to the trainee, with different answer
options, which can be answered correctly or not and the
feedback on the answer. The trainee can also take actions,
such as clicking on a button, and get feedback on
it. This element is important for training but not for operations.
• The sequential aspect in the courseware: the information
is presented in a certain sequence in order to let the
trainee build up knowledge and know-how on the system.
Conversely, the operational documentation should
be organized for easy random access at any time and in
context.
Commonalities between Training and Operations
The aim of a training system should be to place the
trainee in an environment which optimizes the ability to
learn. An assumption is that a primary learning objective
of flight training is to build a suitably robust world model
of the desired environment to enable safe and efficient aircraft
operation.
Traditionally, initial type training for pilots has used the
approach of teaching systems in isolation, (e.g., hydraulics,
avionics, engine), in order to give detailed background
knowledge of that system, and then integrate the
systems at a later date. This assumes the need to know
technical detail to operate the aircraft. With a low tech aircraft
this is a sound philosophy, as limitations are only
controlled or exceeded by the pilot, and the pilot is the direct
interface between the machine and its performance.
However modern aircraft are highly complex robotic
devices and it is not possible to build a valid mental model
of the aircraft and operation using traditional techniques in
a reasonable time scale. A different approach is required.
As a basic minimum, the pilot is required to know how to
operate the aircraft, how it will respond, and not necessarily
how it works in detail. Airbus has an advanced program
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:航空资料11(77)