• 热门标签

当前位置: 主页 > 航空资料 > 国外资料 >

时间:2010-08-13 09:05来源:蓝天飞行翻译 作者:admin
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

The COHERE Project
David G. Novick
EURISCO
4 avenue Edouard Belin
31400 Toulouse, France
+33(0)562173838
novick@onecert.fr
ABSTRACT
A key aspect of the COHERE project involves building an
authoring system for documentation for safety-critical systems.
Following a set of documentation integrity maxims, the
project developed two generations of prototype interfaces
designed to assure consistency of information during
production and revision of manuals.
Keywords
Authoring interface, documentation integrity, consistency
1. INTRODUCTION
This paper reports the progress of the COHERE project, which
aims to build an interface for a documentation authoring
environment that assures integrity in manuals for safety-critical
systems such as aircraft. The paper will review the principles
of consistency that drive the design, and then describe two
generations of prototype interfaces for creating and revising
consistent documentation.
The project’s principal goal is to account for cockpit procedures
during development of systems and their documentation for
future Airbus aircraft. The procedures are documented in the
flight crew operating manual (FCOM), which contains:
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage. and that
copies bear this notice and the full citation on the first page. To copy
othenvise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
01990 ACM l-!58113-004-W98/0009 $5.00
Joel Juillet
EURISCO
4 avenue Edouard Belin
31400 Toulouse, France
+33(0)562173838
l a set of parameters, such as charts for take-off and landing
speeds as a function of weight,
l a set of explanations of the aircraft’s systems and controls,
such as the hydraulic system and the interface to the
navigation computers,
l a set of procedures, such as for normal, abnormal and
emergency conditions, and
l a set of checklists.
The FCOM is written and published by the a&aft
manufacturer and is often adapted and republished (sometimes
in translation) by individual airlines to meet their own
guidelines or standards for publications and operations. For
example, Singapore Airlines and Virgin Airlines both use
FCOMs directly published by Airbus, with sequence
differences indicating minor specialization of the FCOM for
their particular needs. United Airlines and Lufthansa revise, to
a greater extent, the FCOM and publish their own versions.
Air France revises and translates the FCOM into French in
publishing its own version.
A key aspect in achieving the project’s goal involves the
development of an interface for the system through which
engineers and authors develop and revise future FCOMs, which
are likely to be based on hypertext. This builds on work on
(re)generation of documentation for software [3] and for ahcraft
[lo]. In contrast to hypertext systems for specializing a
document for the user [4], a document development system
faces the issue of making things consistent throughout the
document. An aimraft is a complex system; for example, the
first chapter of the FCOM for the Airbus A340 aimraft
contains 13 pages of definitions of abbreviations, ranging hm
A (Amber) to ZFW (Zero Fuel Weight).
The problems of documentation integrity with respect to
consistency are not simply academic. A review of recent
reports from the National Transportation Safety Board discloses
a number of accidents and incidents arising from different kinds
of inconsistency in documentation. In one case [5], an aimrat%
maintenance and (non-updated) flight manuals contained
different versions of the procedure for releasing the parking
51
brake. The pilot used one of the versions, which left the brake
unreleased and thus caused the aircraft to nose over on landing.
In another case [6], the text and accompanying diagram in a
maintenance manual for a commercial jet differed in a way that
led to the failure of a thrust reverser through loss of a cotter
pin. The text indicated that a single washer should be fitted
before a nut at the end of a pivot bolt in the thrust-reverser
linkage; the diagram indicated two washers. Maintenance
personnel followed the diagram rather than .the text. As a
result, the bolt did not extend far enough beyond the nut for a
required cotter pin to be inserted correctly. The loss of the
cotter pin led to loss of the pivot bolt and consequent
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:航空资料8(10)