曝光台 注意防骗
网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者
features from each of these product lines, updated as needed, resulted in an all-new A330/A340 aircraft
programme remarkably free of teething troubles, while at the same time providing a new benchmark for
aircraft in this size category. As an added benefit, the technological features of the A330/A340 can, in
many cases, be used to improve the established older product lines.
30.3 Systems
Before the entry into service of the A330/A340, the world’s most technologically advanced airliner, in
any category, was the A320. Its design formed the basis for the A330/A340 systems.
30.4 Cockpit
The A330/A340 cockpit is designed to be identical to that of the A320, from the point of view of the
crew. The exceptions to this rule are associated with the size of the aircraft and to the added needs of
the long-range mission, such as improved dispatchability, polar navigation capability, and of course,
engine-related features.
The result is that the 130-seat-capacity short/medium haul A319 up to the 340-plus seat capacity very
long-haul A340 have the most advanced flight deck of any airliner, enabling the same crews to fly any of
these aircraft with minimum additional training needed.
30.5 User Involvement
The design of the A330/A340 cockpit has evolved from the same methods that were used successfully on
the first Airbus Industrie A300.
The initial design of the cockpit (and the systems) was based on three features:
• The existing cockpit from the previous aircraft (the A320 in this case).
• The geometry of the A330/A340 nose section (which is based on the geometry of the A300, A310,
and 300-600).
• Applicable new research and development work carried out since the A320 had been designed.
© 2001 by CRC Press LLC
This initial design was reviewed by a task force consisting of pilots and engineers of each of the launch
airlines in the light of their experience with the A320 or with other aircraft that were operating on the
intended routes for the A330 and A340.
The task force met a number of times over a period of over a year. At each of these steps the design
of the A330/A340 was refined, and certain features were mocked up for the next iteration in the review.
The final design of the aircraft system and cockpit is essentially the one that the airline task force
experienced and “flew” in the simulators during their final sessions.
30.6 Avionics
The avionics of the A330/A340 are highly integrated for optimal crew use and for optimal maintenance.
As with all previous new and derivative aircraft since the A300FF of 1981, the primary data bus standard
is ARINC 429 with ARINC 600 packaging. Other industry bus standards are used in specific applications
where ARINC 429 is not suitable.
30.7 Instruments
The six CRTs on the main instrument panel display present flight and systems information to the pilots.
This arrangement provides excellent visibility of all CRTs.
Flight information is provided by the Electronic Flight Instrumentation System (EFIS) consisting of
a PFD and a ND in front of each pilot.
Systems information is provided by the Electronic Centralized Aircraft Monitor (ECAM) consisting
of the engine/warning display on the upper screen and aircraft systems display on the lower screen.
Sensors throughout the aircraft continuously monitor the systems and if a parameter moves out of
the normal range they automatically warn the pilot.
During normal flight the ECAM presents systems displays according to the phase of flight, showing
the systems in which the pilot is interested, e.g., some secondary engine data, pressurization, and cabin
temperature. The pilot can, by manual selection, interrogate any system at any time. Should another
system require attention, the ECAM will automatically present it to the flight crew for action.
Should a system fault occur that results in a cascade of other system faults, ECAM identifies the
originating fault, and presents the operational checklists without any need for added crew actions.
The information display formats currently in use enable the pilots to assimilate the operational
situation of the aircraft much more easily than on the previous generation of aircraft.
There are substantial advantages on the maintenance side as well, in that the entire Electronic Instrument
system consists of only three LRU types, enabling significant dispatchability and spare stocks availability.
In fact, all the flight information (including standby) is presented on only 11 instruments of 6 types.
A new EIS, using liquid crystal displays, is being installed on the A330/A340 and A320 family of aircraft
deliverable from 2001, offering improved capabilities and cost of ownership.
30.8 Navigation
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:
航空资料17(62)