• 热门标签

当前位置: 主页 > 航空资料 > 国外资料 >

时间:2010-05-10 19:22来源:蓝天飞行翻译 作者:admin
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

13-10
Tetrahedron
Wind Sock or ConeWind TeeWIND
Figure 13-12. Wind direction indicators.Wind Direction Indicators
It is important for a pilot to know the direction of the wind. At facilities with an operating control tower, this information is provided by ATC. Information may also be provided by FSS personnel located at a particular airport or by requesting information on a CTAF at airports that have the capacity to receive and broadcast on this frequency.
When none of these services is available, it is possible to determine wind direction and runway in use by visual wind indicators. A pilot should check these wind indicators even when information is provided on the CTAF at a given airport because there is no assurance that the information provided is accurate.
The wind direction indicator can be a wind cone, wind sock, tetrahedron, or wind tee. These are usually located in a central location near the runway and may be placed in the center of a segmented circle, which identifies the traffic pattern direction, if it is other than the standard left-hand pattern. [Figures 13-12 and 13-13]
The wind sock is a good source of information since it not only indicates wind direction, but allows the pilot to estimate the wind velocity and gusts or factor. The wind sock extends out straighter in strong winds and tends to move back and forth when the wind is gusty. Wind tees and tetrahedrons can swing freely, and align themselves with the wind direction. The wind tee and tetrahedron can also be manually set to align with the runway in use; therefore, a pilot should also look at the wind sock, if available.
Traffic Patterns
At those airports without an operating control tower, a segmented circle visual indicator system [Figure 13-13], if installed, is designed to provide traffic pattern information. Usually located in a position affording maximum visibility to pilots in the air and on the ground and providing a centralized location for other elements of the system, the segmented circle consists of the following components: wind direction indicators, landing direction indicators, landing strip indicators, and traffic pattern indicators.
A tetrahedron is installed to indicate the direction of landings and takeoffs when conditions at the airport warrant its use. It may be located at the center of a segmented circle and may be lighted for night operations. The small end of the tetrahedron points in the direction of landing. Pilots are cautioned against using a tetrahedron for any purpose other than as an indicator of landing direction. At airports with control towers, the tetrahedron should only be referenced when the control tower is not in operation. Tower instructions supersede tetrahedron indications.Landing strip indicators are installed in pairs as shown in Figure 13-13 and are used to show the alignment of landing strips. Traffic pattern indicators are arranged in pairs in conjunction with landing strip indicators and used to indicate the direction of turns when there is a variation from the normal left traffic pattern. (If there is no segmented circle installed at the airport, traffic pattern indicators may be installed on or near the end of the runway.)
13-11
Wind Cone
Landing Runwayor Landing Strip IndicatorsLanding DirectionIndicatorTraffic PatternIndicators
Figure 13-13. Segmented circle.
At most airports and military air bases, traffic pattern altitudes for propeller-driven aircraft generally extend from 600 feet to as high as 1,500 feet above ground level (AGL). Pilots can obtain the traffic pattern altitude for an airport from the A/FD. Also, traffic pattern altitudes for military turbojet aircraft sometimes extend up to 2,500 feet AGL. Therefore, pilots of en route aircraft should be constantly on the alert for other aircraft in traffic patterns and avoid these areas whenever possible. When operating at an airport, traffic pattern altitudes should be maintained unless otherwise required by the applicable distance from cloud criteria in Title 14 of the Code of Federal Regulations (14 CFR) section 91.155. Additional information on airport traffic pattern operations can be found in Chapter 4, Air Traffic Control, of the AIM. Pilots can find traffic pattern information and restrictions such as noise abatement in the A/FD.
Example: Key to Traffic Pattern Operations—Single Runway
1. Enter pattern in level flight, abeam the midpoint of the runway, at pattern altitude. (1,000' AGL) is recommended pattern altitude unless established otherwise.)
2. Maintain pattern altitude until abeam approach end of the landing runway on downwind leg.
3. Complete turn to final at least ¼ mile from the runway.
4. Continue straight ahead until beyond departure end of runway.
5. If remaining in the traffic pattern, commence turn to crosswind leg beyond the departure end of the runway within 300 feet of pattern altitude.
6. If departing the traffic pattern, continue straight out, or exit with a 45° turn (to the left when in a left-hand traffic pattern; to the right when in a right-hand traffic pattern) beyond the departure end of the runway, after reaching pattern altitude. [Figure 13-14]
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:Pilot's Handbook of Aeronautical Knowledge航空知识手册3(6)