• 热门标签

当前位置: 主页 > 航空资料 > 国外资料 >

时间:2010-05-10 19:22来源:蓝天飞行翻译 作者:admin
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

The HSI is a direction indicator that uses the output from a flux valve to drive the compass card. The HSI [Figure 15-30] combines the magnetic compass with navigation signals and a glideslope. The HSI gives the pilot an indication of the location of the aircraft with relationship to the chosen course or radial.
In Figure 15-30, the aircraft magnetic heading displayed on the compass card under the lubber line is 184°. The course select pointer shown is set to 295°; the tail of the pointer indicates the reciprocal, 115°. The course deviation bar operates with a VOR/Localizer (VOR/LOC) or GPS navigation receiver to indicate left or right deviations from the course selected with the course select pointer; operating in the same manner, the angular movement of a conventional VOR/LOC needle indicates deviation from course.
The desired course is selected by rotating the course select pointer, in relation to the compass card, by means of the course select knob. The HSI has a fixed aircraft symbol and the course deviation bar displays the aircraft’s position relative to the selected course. The TO/FROM indicator is a triangular pointer. When the indicator points to the head of the course select pointer, the arrow shows the course selected. If properly intercepted and flown, the course will take the aircraft to the chosen facility. When the indicator points to the tail of the course, the arrow shows that the course selected, if properly intercepted and flown, will take the aircraft directly away from the chosen facility.
When the NAV warning flag appears it indicates no reliable signal is being received. The appearance of the HDG flag indicates the compass card is not functioning properly.
The glideslope pointer indicates the relation of the aircraft to the glideslope. When the pointer is below the center position, the aircraft is above the glideslope and an increased rate of descent is required. In some installations, the azimuth card is a remote indicating compass; however, in others the heading must be checked occasionally against the magnetic compass and reset.Radio Magnetic Indicator (RMI)
The RMI [Figure 15-31] is a navigational aid providing aircraft magnetic or directional gyro heading and very high frequency omnidirectional range (VOR), GPS, and automatic direction finder (ADF) bearing information. Remote indicating
15-25
Figure 15-32. Tracking a radial in a crosswind.
NOTES
1. View position2. Movable-reset turnNESW33324211512306TOOBS3330242II5I263NESW33324211512306TOOBS3330242II5I263NESW33324211512306TOOBS3330242II5I263NESW3332421112306TOOBS3330242II5I263NESW33324211512306TOOBS3330242II5I263NESW33324211512306FROMOBS3330242II5I263NESW33324211512306FROMOBS330242II5I263NESW33324211512306FROMOBS3330242II5I26332145678018276BRAVOBRA115.0WIND
compasses were developed to compensate for errors in and limitations of older types of heading indicators.
The remote compass transmitter is a separate unit usually mounted in a wingtip to eliminate the possibility of magnetic interference. The RMI consists of a compass card, a heading index, two bearing pointers, and pointer function switches. The two pointers are driven by any two combinations of a GPS, an ADF, and/or a VOR. The pilot has the ability to select the navigation aid to be indicated. The pointer indicates course to selected NAVAID or waypoint. In Figure 15-31 the green pointer is indicating the station tuned on the ADF. The yellow pointer is indicating the course to a VOR of GPS waypoint. Note that there is no requirement for a pilot to select course with the RMI, but only the NAVAID is to be indicated. Tracking With VOR
The following describes a step-by-step procedure to use when tracking to and from a VOR station using a CDI. Figure 15-32 illustrates the procedure.
First, tune the VOR receiver to the frequency of the selected VOR station. For example, 115.0 to receive Bravo VOR. Next, check the identifiers to verify that the desired VOR is being received. As soon as the VOR is properly tuned, the course deviation needle deflects either left or right. Then, rotate the azimuth dial to the course selector until the course deviation needle centers and the TO-FROM indicator indicates “TO.” If the needle centers with a “FROM” indication, the azimuth should be rotated 180° because, in this case, it is desired to fly “TO” the station. Now, turn the aircraft to the heading indicated on the VOR azimuth dial or course selector, 350° in this example.
If a heading of 350° is maintained with a wind from the right as shown, the aircraft drifts to the left of the intended track. As the aircraft drifts off course, the VOR course deviation needle gradually moves to the right of center or indicates the direction of the desired radial or track.
To return to the desired radial, the aircraft heading must be altered to the right. As the aircraft returns to the desired track, the deviation needle slowly returns to center. When centered, the aircraft is on the desired radial and a left turn must be made toward, but not to the original heading of 350° because a wind drift correction must be established. The amount of correction depends upon the strength of the wind. If the wind velocity is unknown, a trial-and-error method can be used to find the correct heading. Assume, for this example, a 10° correction for a heading of 360° is maintained.
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:Pilot's Handbook of Aeronautical Knowledge航空知识手册3(30)