曝光台 注意防骗
网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者
propeller beta range operation will dramatically reduce
the need for braking in comparison to piston airplanes
of similar weights.
TRAINING CONSIDERATIONS
The medium and high altitudes at which turboprop
airplanes are flown provide an entirely different
environment in terms of regulatory requirements,
airspace structure, physiological requirements, and
even meteorology. The pilot transitioning to turboprop
airplanes, particularly those who are not familiar with
operations in the high/medium altitude environment,
should approach turboprop transition training with this
in mind. Thorough ground training should cover all
aspects of high/medium altitude flight, including the
flight environment, weather, flight planning and
navigation, physiological aspects of high-altitude
flight, oxygen and pressurization system operation,
and high-altitude emergencies.
Flight training should prepare the pilot to demonstrate
a comprehensive knowledge of airplane performance,
systems, emergency procedures, and operating
limitations, along with a high degree of proficiency in
performing all flight maneuvers and in-flight
emergency procedures.
The training outline below covers the minimum
information needed by pilots to operate safely at high
altitudes.
a. Ground Training
(1) The High-Altitude Flight Environment
(a) Airspace
(b) Title 14 of the Code of Federal Regulations
(14 CFR) section 91.211, requirements for
use of supplemental oxygen
(2) Weather
(a) The atmosphere
(b) Winds and clear air turbulence
(c) Icing
(3) Flight Planning and Navigation
(a) Flight planning
(b) Weather charts
(c) Navigation
(d) Navaids
(4) Physiological Training
(a) Respiration
(b) Hypoxia
(c) Effects of prolonged oxygen use
(d) Decompression sickness
(e) Vision
(f) Altitude chamber (optional)
(5) High-Altitude Systems and Components
(a) Oxygen and oxygen equipment
(b) Pressurization systems
(c) High-altitude components
(6) Aerodynamics and Performance Factors
(a) Acceleration
(b) G-forces
(c) MACH Tuck and MACH Critical (turbojet
airplanes)
(7) Emergencies
(a) Decompression
(b) Donning of oxygen masks
(c) Failure of oxygen mask, or complete loss of
oxygen supply/system
(d) In-flight fire
(e) Flight into severe turbulence or thunderstorms
b. Flight Training
(1) Preflight Briefing
(2) Preflight Planning
(a) Weather briefing and considerations
(b) Course plotting
(c) Airplane Flight Manual
(d) Flight plan
(3) Preflight Inspection
(a) Functional test of oxygen system, including
the verification of supply and pressure, regulator
operation, oxygen flow, mask fit, and
cockpit and air traffic control (ATC)
communication using mask microphones
(4) Engine Start Procedures, Runup, Takeoff, and
Initial Climb
(5) Climb to High Altitude and Normal Cruise
Operations While Operating Above 25,000
Feet MSL
(6) Emergencies
(a) Simulated rapid decompression, including
the immediate donning of oxygen masks
(b) Emergency descent
(7) Planned Descents
(8) Shutdown Procedures
(9) Postflight Discussion
Ch 14.qxd 5/7/04 10:09 AM Page 14-12
15-1
GENERAL
This chapter contains an overview of jet powered
airplane operations. It is not meant to replace any
portion of a formal jet airplane qualification course.
Rather, the information contained in this chapter is
meant to be a useful preparation for and a supplement
to formal and structured jet airplane qualification
training. The intent of this chapter is to provide
information on the major differences a pilot will
encounter when transitioning to jet powered airplanes.
In order to achieve this in a logical manner, the major
differences between jet powered airplanes and piston
powered airplanes have been approached by
addressing two distinct areas: differences in
technology, or how the airplane itself differs; and
differences in pilot technique, or how the pilot deals
with the technological differences through the
application of different techniques. If any of the
information in this chapter conflicts with information
contained in the FAA-approved Airplane Flight
Manual for a particular airplane, the Airplane Flight
Manual takes precedence.
JET ENGINE BASICS
A jet engine is a gas turbine engine. A jet engine
develops thrust by accelerating a relatively small mass
of air to very high velocity, as opposed to a propeller,
which develops thrust by accelerating a much larger
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:
AIRPLANE FLYING HANDBOOK 飞机飞行手册下(67)