曝光台 注意防骗
网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者
decision to reject a takeoff is made, the pilot should
promptly close both throttles and maintain directional
control with the rudder, nosewheel steering, and
brakes. Aggressive use of rudder, nosewheel steering,
and brakes may be required to keep the airplane on
the runway. Particularly, if an engine failure is not
immediately recognized and accompanied by
prompt closure of both throttles. However, the primary
objective is not necessarily to stop the airplane
in the shortest distance, but to maintain control of
the airplane as it decelerates. In some situations, it
may be preferable to continue into the overrun area
under control, rather than risk directional control loss,
landing gear collapse, or tire/brake failure in an
attempt to stop the airplane in the shortest possible
distance.
ENGINE FAILURE AFTER LIFT-OFF
A takeoff or go-around is the most critical time to suffer
an engine failure. The airplane will be slow, close
to the ground, and may even have landing gear and
flaps extended. Altitude and time will be minimal.
Until feathered, the propeller of the failed engine will
be windmilling, producing a great deal of drag and
yawing tendency. Airplane climb performance will be
marginal or even non-existent, and obstructions may
lie ahead. Add the element of surprise and the need for
a plan of action before every takeoff is obvious.
With loss of an engine, it is paramount to maintain
airplane control and comply with the manufacturer’s
recommended emergency procedures. Complete failure
of one engine shortly after takeoff can be broadly
categorized into one of three following scenarios.
1. Landing gear down. [Figure 12-11] If the
engine failure occurs prior to selecting the landing
gear to the UP position, close both throttles
and land on the remaining runway or overrun.
Depending upon how quickly the pilot reacts to
the sudden yaw, the airplane may run off the
side of the runway by the time action is taken.
There are really no other practical options. As
discussed earlier, the chances of maintaining
directional control while retracting the flaps (if
extended), landing gear, feathering the propeller,
and accelerating are minimal. On some airplanes
with a single-engine-driven hydraulic pump,
failure of that engine means the only way to
raise the landing gear is to allow the engine to
windmill or to use a hand pump. This is not a
viable alternative during takeoff.
2. Landing gear control selected up, singleengine
climb performance inadequate.
[Figure 12-12] When operating near or above
the single-engine ceiling and an engine failure is
experienced shortly after lift-off, a landing must
be accomplished on whatever essentially lies
ahead. There is also the option of continuing
ahead, in a descent at VYSE with the remaining
engine producing power, as long as the pilot
is not tempted to remain airborne beyond the
airplane’s performance capability. Remaining
airborne, bleeding off airspeed in a futile
attempt to maintain altitude is almost invariably
fatal. Landing under control is paramount. The
greatest hazard in a single-engine takeoff is
attempting to fly when it is not within the per-
Ch 12.qxd 5/7/04 9:54 AM Page 12-18
12-19
formance capability of the airplane to do so. An
accident is inevitable.
Analysis of engine failures on takeoff reveals a very
high success rate of off-airport engine inoperative
landings when the airplane is landed under control.
Analysis also reveals a very high fatality rate in stallspin
accidents when the pilot attempts flight beyond
the performance capability of the airplane.
As mentioned previously, if the airplane’s landing gear
retraction mechanism is dependent upon hydraulic
pressure from a certain engine-driven pump, failure
of that engine can mean a loss of hundreds of feet of
altitude as the pilot either windmills the engine to
provide hydraulic pressure to raise the gear or raises
it manually with a backup pump.
3. Landing gear control selected up, singleengine
climb performance adequate. [Figure
12-13] If the single-engine rate of climb is
adequate, the procedures for continued flight
should be followed. There are four areas of
concern: control, configuration, climb, and
checklist.
• CONTROL— The first consideration following
engine failure during takeoff is control of the airplane.
Upon detecting an engine failure, aileron
should be used to bank the airplane and rudder
pressure applied, aggressively if necessary, to
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:
AIRPLANE FLYING HANDBOOK 飞机飞行手册下(39)