• 热门标签

当前位置: 主页 > 航空资料 > 国外资料 >

时间:2010-05-09 10:21来源:蓝天飞行翻译 作者:admin
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

landing on whatever runway or surface lies essentially
ahead. If an engine fails after this point, the pilot should
promptly execute the appropriate engine failure procedure
and continue the climb, assuming the performance
capability exists. As a general recommendation, if the
landing gear has not been selected up, the takeoff
should be rejected, even if airborne.
As a practical matter for planning purposes, the option
of continuing the takeoff probably does not exist unless
the published single-engine rate-of-climb performance
is at least 100 to 200 f.p.m. Thermal turbulence, wind
gusts, engine and propeller wear, or poor technique in
airspeed, bank angle, and rudder control can easily
negate even a 200 f.p.m. rate of climb.
WEIGHT AND BALANCE
The weight and balance concept is no different than
that of a single-engine airplane. The actual execution,
however, is almost invariably more complex due to a
number of new loading areas, including nose and aft
baggage compartments, nacelle lockers, main fuel
tanks, aux fuel tanks, nacelle fuel tanks, and numerous
seating options in a variety of interior configurations.
The flexibility in loading offered by the multiengine
airplane places a responsibility on the pilot to address
weight and balance prior to each flight.
The terms “empty weight, licensed empty weight,
standard empty weight, and basic empty weight” as
they appear on the manufacturer’s original weight and
balance documents are sometimes confused by pilots.
In 1975, the General Aviation Manufacturers
Association (GAMA) adopted a standardized format
for AFM/POHs. It was implemented by most
manufacturers in model year 1976. Airplanes whose
manufacturers conform to the GAMA standards utilize
the following terminology for weight and balance:
Standard empty weight
+ Optional equipment
= Basic empty weight
Standard empty weight is the weight of the standard
airplane, full hydraulic fluid, unusable fuel, and full
oil. Optional equipment includes the weight of all
equipment installed beyond standard. Basic empty
weight is the standard empty weight plus optional
equipment. Note that basic empty weight includes no
usable fuel, but full oil.
Airplanes manufactured prior to the GAMA format
generally utilize the following terminology for weight
and balance, although the exact terms may vary somewhat:
Empty weight
+ Unusable fuel
= Standard empty weight
Standard empty weight
+ Optional equipment
= Licensed empty weight
Empty weight is the weight of the standard airplane,
full hydraulic fluid and undrainable oil. Unusable fuel
is the fuel remaining in the airplane not available to
the engines. Standard empty weight is the empty
weight plus unusable fuel. When optional equipment
is added to the standard empty weight, the result is
licensed empty weight. Licensed empty weight,
therefore, includes the standard airplane, optional
equipment, full hydraulic fluid, unusable fuel, and
undrainable oil.
The major difference between the two formats
(GAMA and the old) is that basic empty weight
includes full oil, and licensed empty weight does not.
12-10
Ch 12.qxd 5/7/04 9:54 AM Page 12-10
Oil must always be added to any weight and balance
utilizing a licensed empty weight.
When the airplane is placed in service, amended
weight and balance documents are prepared by appropriately
rated maintenance personnel to reflect changes
in installed equipment. The old weight and balance
documents are customarily marked “superseded” and
retained in the AFM/POH. Maintenance personnel are
under no regulatory obligation to utilize the GAMA
terminology, so weight and balance documents
subsequent to the original may use a variety of
terms. Pilots should use care to determine whether
or not oil has to be added to the weight and balance
calculations or if it is already included in the figures
provided.
The multiengine airplane is where most pilots
encounter the term “zero fuel weight” for the first time.
Not all multiengine airplanes have a zero fuel weight
limitation published in their AFM/POH, but many do.
Zero fuel weight is simply the maximum allowable
weight of the airplane and payload, assuming there is
no usable fuel on board. The actual airplane is not
devoid of fuel at the time of loading, of course. This is
merely a calculation that assumes it was. If a zero fuel
weight limitation is published, then all weight in
excess of that figure must consist of usable fuel. The
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:AIRPLANE FLYING HANDBOOK 飞机飞行手册下(31)