曝光台 注意防骗
网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者
airplanes, this may be above the single-engine service
ceiling, and level flight will not be possible.
Repeated feathering and unfeathering is hard on the
engine and airframe, and should be done only as
absolutely necessary to ensure adequate training. The
FAA’s practical test standards for a multiengine class
rating requires the feathering and unfeathering of one
propeller during flight in airplanes in which it is safe to
do so.
While much of this chapter has been devoted to the
unique flight characteristics of the multiengine airplane
with one engine inoperative, the modern,
well-maintained reciprocating engine is remarkably
reliable. Simulated engine failures at extremely low
altitudes (such as immediately after lift-off) and/or
below VSSE are undesirable in view of the non-existent
safety margins involved. The high risk of simulating
an engine failure below 200 feet AGL does not warrant
practicing such maneuvers.
For training in maneuvers that would be hazardous in
flight, or for initial and recurrent qualification in an
advanced multiengine airplane, a simulator training
center or manufacturer’s training course should be
given consideration. Comprehensive training manuals
and classroom instruction are available along with system
training aids, audio/visuals, and flight training
devices and simulators. Training under a wide variety
of environmental and aircraft conditions is available
through simulation. Emergency procedures that would
be either dangerous or impossible to accomplish in an
airplane can be done safely and effectively in a flight
training device or simulator. The flight training device
or simulator need not necessarily duplicate the specific
make and model of airplane to be useful. Highly
effective instruction can be obtained in training
devices for other makes and models as well as generic
training devices.
The majority of multiengine training is conducted in
four to six-place airplanes at weights significantly less
than maximum. Single-engine performance, particularly
at low density altitudes, may be deceptively good.
To experience the performance expected at higher
weights, altitudes, and temperatures, the instructor
should occasionally artificially limit the amount of
manifold pressure available on the operative engine.
Airport operations above the single-engine ceiling can
also be simulated in this manner. Loading the airplane
with passengers to practice emergencies at maximum
takeoff weight is not appropriate.
The use of the touch-and-go landing and takeoff in
flight training has always been somewhat controversial.
The value of the learning experience must be weighed
against the hazards of reconfiguring the airplane for
takeoff in an extremely limited time as well as the loss
of the follow-through ordinarily experienced in a full
stop landing. Touch and goes are not recommended
during initial aircraft familiarization in multiengine
airplanes.
If touch and goes are to be performed at all, the student
and instructor responsibilities need to be carefully
briefed prior to each flight. Following touchdown, the
student will ordinarily maintain directional control
while keeping the left hand on the yoke and the right
hand on the throttles. The instructor resets the flaps
and trim and announces when the airplane has been
reconfigured. The multiengine airplane needs considerably
more runway to perform a touch and go than a
single-engine airplane. A full stop-taxi back landing is
preferable during initial familiarization. Solo touch
and goes in twins are strongly discouraged.
Ch 12.qxd 5/7/04 9:55 AM Page 12-32
13-1
TAILWHEEL AIRPLANES
Tailwheel airplanes are often referred to as
conventional gear airplanes. Due to their design and
structure, tailwheel airplanes exhibit operational and
handling characteristics that are different from those of
tricycle gear airplanes. Tailwheel airplanes are not
necessarily more difficult to takeoff, land, and/or taxi
than tricycle gear airplanes; in fact under certain
conditions, they may even handle with less difficulty.
This chapter will focus on the operational differences
that occur during ground operations, takeoffs, and
landings.
LANDING GEAR
The main landing gear forms the principal support of
the airplane on the ground. The tailwheel also supports
the airplane, but steering and directional control are its
primary functions. With the tailwheel-type airplane, the
two main struts are attached to the airplane slightly
ahead of the airplane’s center of gravity (CG).
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:
AIRPLANE FLYING HANDBOOK 飞机飞行手册下(52)