曝光台 注意防骗
网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者
aircraft certification and zero sideslip is not part of a
VMC demonstration for pilot certification.
To review, there are two different sets of bank angles
used in one-engine-inoperative flight.
• To maintain directional control of a multiengine
airplane suffering an engine failure at low speeds
(such as climb), momentarily bank at least 5°,
and a maximum of 10° towards the operative
engine as the pitch attitude for VYSE is set. This
maneuver should be instinctive to the proficient
multiengine pilot and take only 1 to 2 seconds to
attain. It is held just long enough to assure directional
control as the pitch attitude for VYSE is
assumed.
• To obtain the best climb performance, the airplane
must be flown at VYSE and zero sideslip,
with the failed engine feathered and maximum
available power from the operating engine. Zero
sideslip is approximately 2° of bank toward the
operating engine and a one-third to one-half ball
deflection, also toward the operating engine. The
precise bank angle and ball position will vary
somewhat with make and model and power
available. If above the airplane’s single-engine
ceiling, this attitude and configuration will result
in the minimum rate of sink.
In OEI flight at low altitudes and airspeeds such as the
initial climb after takeoff, pilots must operate the airplane
so as to guard against the three major accident factors:
(1) loss of directional control, (2) loss of performance,
and (3) loss of flying speed. All have equal potential to
be lethal. Loss of flying speed will not be a factor,
however, when the airplane is operated with due regard
for directional control and performance.
SLOW FLIGHT
There is nothing unusual about maneuvering during
slow flight in a multiengine airplane. Slow flight may
be conducted in straight-and-level flight, turns, in the
clean configuration, landing configuration, or at any
other combination of landing gear and flaps. Pilots
should closely monitor cylinder head and oil temperatures
during slow flight. Some high performance
multiengine airplanes tend to heat up fairly quickly
under some conditions of slow flight, particularly in
the landing configuration.
Simulated engine failures should not be conducted during
slow flight. The airplane will be well below VSSE
and very close to VMC. Stability, stall warning or stall
avoidance devices should not be disabled while
maneuvering during slow flight.
STALLS
Stall characteristics vary among multiengine airplanes
just as they do with single-engine airplanes, and
therefore, it is important to be familiar with them. The
application of power upon stall recovery, however,
has a significantly greater effect during stalls in a
Ch 12.qxd 5/7/04 9:55 AM Page 12-25
12-26
twin than a single-engine airplane. In the twin, an
application of power blows large masses of air from
the propellers directly over the wings, producing a
significant amount of lift in addition to the expected
thrust. The multiengine airplane, particularly at light
operating weights, typically has a higher thrust-toweight
ratio, making it quicker to accelerate out of a
stalled condition.
In general, stall recognition and recovery training in
twins is performed similar to any high performance
single-engine airplane. However, for twins, all stall
maneuvers should be planned so as to be completed at
least 3,000 feet AGL.
Single-engine stalls or stalls with significantly more
power on one engine than the other should not be
attempted due to the likelihood of a departure from
controlled flight and possible spin entry. Similarly,
simulated engine failures should not be performed during
stall entry and recovery.
POWER-OFF STALLS
(APPROACH AND LANDING)
Power-off stalls are practiced to simulate typical
approach and landing scenarios. To initiate a power-off
stall maneuver, the area surrounding the airplane
should first be cleared for possible traffic. The airplane
should then be slowed and configured for an approach
and landing. Astabilized descent should be established
(approximately 500 f.p.m.) and trim adjusted. The pilot
should then transition smoothly from the stabilized
descent attitude, to a pitch attitude that will induce a
stall. Power is reduced further during this phase, and
trimming should cease at speeds slower than takeoff.
When the airplane reaches a stalled condition, the
recovery is accomplished by simultaneously reducing
the angle of attack with coordinated use of the flight
controls and smoothly applying takeoff or specified
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:
AIRPLANE FLYING HANDBOOK 飞机飞行手册下(45)