• 热门标签

当前位置: 主页 > 航空资料 > 航务运行 >

时间:2010-07-25 16:19来源:蓝天飞行翻译 作者:admin
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

102 NM
tailwind
20 kt 108 NM
headwind
20 kt
96 NM
1 - Descent angle and rate of descent
A 320
A project supported by AIRBUS and the CAAC
Date of the module
1 - Descent angle and rate of descent
2 - Descent in operation
3 - Cabin descent
Table of Contents
A project supported by AIRBUS and the CAAC
Date of the module
V.3.3.2 - Descent in operation
Example: A320
landing
descent at constant speed
A320: 300 kt (CAS)
descent at constant speed
250 kt (ATC limitation)
descent at constant Mach
A320 : M 0.78
deceleration
deceleration to
approach speed
10000 ft
29500 ft
Top Of
Descent (TOD)
.78/300/250
A project supported by AIRBUS and the CAAC
Date of the module
altitude
True Air Speed Rate of Descent
constant CAS
constant Mach
constant Mach
TROPOPAUSE
V.3.3.2 - Descent in operation
Energy conservation
A project supported by AIRBUS and the CAAC
Date of the module
cruise thrust
descent at
idle thrust
high speed
low speed
2 - Descent in operation
Emergency descent :
- Idle
- MMO/VMO
- Spoilers
A project supported by AIRBUS and the CAAC
Date of the module
2 - Descent in operation
 Influencing Parameters
1. Altitude Effect
it is difficult to assess descent parameters (gradient
and rate), as they only depend on drag and not on
thrust (which is assumed to be set to idle).
2. Temperature Effect
As for pressure altitude, the temperature effect is
difficult to assess. Indeed,
3. Weight Effect
Weight↑ ⇒ descent gradient↓
rate of descent ↓
A project supported by AIRBUS and the CAAC
Date of the module
2 - Descent in operation
 4. Wind Effect
Headwind ↑ ⇒ Rate of descent →
Fuel and time from T/D →
Flight path angle ∣γg∣↑
Ground distance from T/D ↓
A project supported by AIRBUS and the CAAC
Date of the module
1 - Descent angle and rate of descent
2 - Descent in operation
3 - Cabin descent
Table of Contents
A project supported by AIRBUS and the CAAC
Date of the module
emergency
descent
cruise
time
Zp A320
maximum altitude
complying with Pmax
envelope of
allowed descents
Pmax
normal cabin
rate of descent
300 ft/min
3 - Cabin descent
A project supported by AIRBUS and the CAAC
Date of the module
Table of Contents
1 - Cruise
2 - Climb
3 - Descent
4 - Holding
A project supported by AIRBUS and the CAAC
Date of the module
1 - Holding speed
2 - Optimum holding altitude
Table of Contents
A project supported by AIRBUS and the CAAC
Date of the module
1 - Holding speed
2 - Optimum holding altitude
Table of Contents
A project supported by AIRBUS and the CAAC
Date of the module
 1 - Holding speed
 Holding  minimize the fuel flow (FF)
FF = TSFC x Thrust
Minimize thrust
Minimum drag or maximum L/D ratio
T = Drag = mg
L/D
A project supported by AIRBUS and the CAAC
Date of the module
 1 - Holding speed
D,T
V
Minimum thrust
drag
Given
m, t°C, Zp,
thrust lever
L/D max V opti
Airbus
Vopti = GREEN DOT
A project supported by AIRBUS and the CAAC
Date of the module
1 - Holding speed
2 - Optimum holding altitude
Table of Contents
A project supported by AIRBUS and the CAAC
Date of the module
Zp
FF
Given
m
minimum fuel
hour
consumption per
altitude
Optimum holding
2 - Optimum holding altitude
Minimum Drag Speed
A project supported by AIRBUS and the CAAC
Date of the module
Zp
FF
decreasing
weight
optimum holding
altitude
2 - Optimum holding altitude
Minimum Drag Speed
A project supported by AIRBUS and the CAAC
Date of the module
 At the end of the flight, the optimum altitude is
often too high (low weight)
 In Operations, holding is made at the assigned
altitude (ATC) at the minimum drag speed
corresponding to the weight
A project supported by AIRBUS and the CAAC
Date of the module
SR
Mach
Zp
Zp1
Zp4
Zp5
Zp3
Zp2
A project supported by AIRBUS and the CAAC
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:flight operation 飞行运行概述(31)