曝光台 注意防骗
网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者
Table of Contents
A project supported by AIRBUS and the CAAC
Date of the module
DESTINATION
ALTERNATE
(Landing aerodrome)
PKG
Fuel mini:
Final reserve
Alternate Fuel
GA
A project supported by AIRBUS and the CAAC
Date of the module
DESTINATION
(Landing airport)
PKG
Fuel mini:
Final reserve
No alternate
A project supported by AIRBUS and the CAAC
Date of the module
DESTINATION
PKG
isolated aerodrome
P: Last point of diversion
Fuel mini at P: TF(P to diversion) + en route reserve + final reserve
A project supported by AIRBUS and the CAAC
Date of the module
Table of Contents
1 -Fuel regulations
2 -Fuel transportation
3 -Selection of aerodromes and planning minima for
IFR flights
A project supported by AIRBUS and the CAAC
Date of the module
1 - Transport coefficient
2 - Interest of fuel transportation
Table of Contents
A project supported by AIRBUS and the CAAC
Date of the module
1 - Transport coefficient
2 - Interest of fuel transportation
Table of Contents
A project supported by AIRBUS and the CAAC
Date of the module
Definition :
When you add (or subtract) one ton to the
landing mass, you have to add (or subtract)
k tonnes to the take off mass.
k =
TOW
LW
A project supported by AIRBUS and the CAAC
Date of the module
k =
TOW
LW
Definition :
Example : for a given leg; the transport coefficient is equal to 1.3
:-
when we add an extra fuel equal to 1300 kg at the departure
aerodrome; the extra fuel remaining at destination will be 1000
kg
- in the other hand , when k = 1.3 to have an extra fuel
equal to 1 t at destination, the cost is 300 kg of fuel.
A project supported by AIRBUS and the CAAC
Date of the module
k
Range (nm)
1.0
1.3
1.6
1000 3000 5000 7000
B737-400
A 320
B747-200
B747-400
A340
range of magnitude
A project supported by AIRBUS and the CAAC
Date of the module
1 - Transport coefficient
2 - Interest of fuel transportation
Table of Contents
A project supported by AIRBUS and the CAAC
Date of the module
Fuel Transport :
at departure, we add : TOW
at destination, the remaining fuel : LW = TOW / k
overcost at departure : TOW x Pd
profit at destination : LW x Pa
overcost due to flight time increment : T x Ph
Pd : fuel price at departure
Pa : fuel price at destination
Ph :marginal cost per flight hour
A project supported by AIRBUS and the CAAC
Date of the module
there is a profit when
.Pa - TOW.Pd - T.Ph > 0
Pa > k.Pd + .T.Ph
when T is negligible , there is a profit when
TOW
k
k
TOW
Pa > k. Pd
the fuel transport can be considered when the destination fuel price /
departure fuel price ratio is more than the transport coefficient
A project supported by AIRBUS and the CAAC
Date of the module
The fuel transport can be considered when the destination fuel
price/departure fuel price ratio is more than the transport coefficient
A project supported by AIRBUS and the CAAC
Date of the module
Flight preparation methods
Computed flight plans
integrated
D/T/C graph method
A project supported by AIRBUS and the CAAC
Date of the module
Table of Contents
1 -Fuel regulations
2 -Fuel transportation
3 -Selection of aerodromes and planning minima for IFR
flights
A project supported by AIRBUS and the CAAC
Date of the module
1 - Selection of aerodromes
2 - Planning minima for IFR flights
Table of Contents
A project supported by AIRBUS and the CAAC
Date of the module
1 - Selection of aerodromes (JAR OPS 1.295)
2 - Planning minima for IFR flights
Table of Contents
A project supported by AIRBUS and the CAAC
Date of the module
Take off alternate
(If it would not be possible to return: performance or
meteorological reasons)
Twin -engined aircraft
DEPARTURE
60 mn at OEI
cruise speed
(still air, ISA)
Area for take off alternate
A project supported by AIRBUS and the CAAC
Date of the module
Continued...
ETOPS Flight
DEPARTURE
Lower of
120 mn at OEI
cruise speed
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:
flight operation 飞行运行概述(17)