A330/A340 Non-normal Operations
REV 1 (6 JUN 05)
FCTM Miscellaneous
Taking into account the runway landing distance available, modulate the use of brakes to avoid very hot brakes and the risk of tyre deflation. In general for A333/A343, brake energy and tyre speed considerations are not limiting even in an overweight condition.
EMERGENCY DESCENT
Initiate the emergency descent only upon positive confirmation that cabin altitude and rate of climb is excessive and uncontrollable. Carry out this procedure from memory. The use of AP and A/THR is strongly recommended for an emergency descent. The FCU selections for an emergency descent progress from right to left, starting with ALT, HDG and then SPD.
At high flight levels, extend the speed brake slowly while monitoring VLS to avoid the activation of angle of attack protection This would cause the speedbrakes to retract and may also result in AP disconnection. If structural damage is suspected, caution must be used when using speedbrakes to avoid further airframe stress. When the aircraft is established in the descent, the PF requests the ECAM actions.
When at idle thrust, at high speed and with speedbrake extended, the rate of descent is approximately 6000 ft/min. It takes approximately 5 minutes and 40 nm to descend from FL400 down to FL100. The MORA value displayed on the ND is the highest MORA value within a circle of 40 nm radius around the aircraft.
The passenger oxygen MASK MAN ON pb should be pressed only when it is clear that cabin altitude will exceed 14000 ft.
UNRELIABLE AIRSPEED INDICATIONS
Unreliable airspeed indications can result from blocked or frozen lines in the pitot/static system.
Most failure modes of the airspeed/altitude system are detected by the ADIRS and lead to the loss of the corresponding cockpit indication(s) and the triggering of associated ECAM procedures. The fault sensing logic relies on a voting principle whereby if one source diverges from the average value, it is automatically rejected and the system continues to operate normally with the remaining two sources. This principle applies to flight controls and flight guidance systems.
However, there may be some cases where the airspeed or altitude output is erroneous without being recognised as such by the ADIRS. In these cases, the cockpit indications appear normal but are actually false and pilots must rely on their basic flying skills to identify the faulty source and take the required corrective action. When only one source provides erroneous data, a simple crosscheck of the parameters generated by the three ADRs allows the faulty ADR to be identified. This identification becomes more difficult in extreme situations when two or all three ADR sources provide erroneous information.
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:A330/A340 机组训练手册 FCTM Flight Crew Training Manual(85)