曝光台 注意防骗
网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者
condition that is desired.
The flight instructor should explain that the controls
will have a natural “live pressure” while in flight and
that they will remain in neutral position of their own
accord, if the airplane is trimmed properly.
With this in mind, the pilot should be cautioned
never to think of movement of the controls, but of
exerting a force on them against this live pressure or
resistance. Movement of the controls should not be
emphasized; it is the duration and amount of the
force exerted on them that effects the displacement
of the control surfaces and maneuvers the airplane.
The amount of force the airflow exerts on a control
surface is governed by the airspeed and the degree that
the surface is moved out of its neutral or streamlined
position. Since the airspeed will not be the same in all
maneuvers, the actual amount the control surfaces are
moved is of little importance; but it is important that
the pilot maneuver the airplane by applying sufficient
control pressure to obtain a desired result, regardless
of how far the control surfaces are actually moved.
The controls should be held lightly, with the fingers,
not grabbed and squeezed. Pressure should be exerted
on the control yoke with the fingers. A common error
in beginning pilots is a tendency to “choke the stick.”
This tendency should be avoided as it prevents the
development of “feel,” which is an important part of
aircraft control.
The pilot’s feet should rest comfortably against the
rudder pedals. Both heels should support the weight
of the feet on the cockpit floor with the ball of each
foot touching the individual rudder pedals. The legs
and feet should not be tense; they must be relaxed
just as when driving an automobile.
Ch 03.qxd 7/13/04 11:08 AM Page 3-1
3-2
When using the rudder pedals, pressure should be
applied smoothly and evenly by pressing with the ball
of one foot. Since the rudder pedals are interconnected,
and act in opposite directions, when pressure is applied
to one pedal, pressure on the other must be relaxed proportionately.
When the rudder pedal must be moved
significantly, heavy pressure changes should be made
by applying the pressure with the ball of the foot while
the heels slide along the cockpit floor. Remember, the
ball of each foot must rest comfortably on the rudder
pedals so that even slight pressure changes can be felt.
In summary, during flight, it is the pressure the pilot
exerts on the control yoke and rudder pedals that
causes the airplane to move about its axes. When a
control surface is moved out of its streamlined position
(even slightly), the air flowing past it will exert a force
against it and will try to return it to its streamlined position.
It is this force that the pilot feels as pressure on
the control yoke and the rudder pedals.
FEEL OF THE AIRPLANE
The ability to sense a flight condition, without relying
on cockpit instrumentation, is often called “feel of the
airplane,” but senses in addition to “feel” are involved.
Sounds inherent to flight are an important sense in
developing “feel.” The air that rushes past the modern
light plane cockpit/cabin is often masked by
soundproofing, but it can still be heard. When the
level of sound increases, it indicates that airspeed is
increasing. Also, the powerplant emits distinctive
sound patterns in different conditions of flight. The
sound of the engine in cruise flight may be different
from that in a climb, and different again from that in
a dive. When power is used in fixed-pitch propeller
airplanes, the loss of r.p.m. is particularly noticeable.
The amount of noise that can be heard will
depend on how much the slipstream masks it out.
But the relationship between slipstream noise and
powerplant noise aids the pilot in estimating not
only the present airspeed but the trend of the airspeed.
There are three sources of actual “feel” that are very
important to the pilot. One is the pilot’s own body as
it responds to forces of acceleration. The “G” loads
imposed on the airframe are also felt by the pilot.
Centripetal accelerations force the pilot down into the
seat or raise the pilot against the seat belt. Radial
accelerations, as they produce slips or skids of the airframe,
shift the pilot from side to side in the seat.
These forces need not be strong, only perceptible by
the pilot to be useful. An accomplished pilot who has
excellent “feel” for the airplane will be able to detect
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:
AIRPLANE FLYING HANDBOOK 飞机飞行手册上(22)