• 热门标签

当前位置: 主页 > 航空资料 > 飞行资料 >

时间:2010-10-20 20:31来源:蓝天飞行翻译 作者:admin
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

Climb
The takeoff and enroute rate-of-climb and climb gradient tables,
Figures 5-10 through 5-14, present maximum rate of climb and climb
gradient for various conditions. The time, fuel, and distance to climb
table, Figure 5-15, allows determination of the time, fuel, and distance
to climb from sea level to a specified pressure altitude. To determine
the values to be used for flight planning, the start-of-climb time, fuel,
and distance values are subtracted from the end-of-climb (cruise
altitude) values. Again, conservative values are obtained by using the
next lower altitude value for start of climb or next higher altitude values
for end of climb. Using conservative values for the sample data, the
following calculations are made:
Start-of-climb values (SL to 1750 feet):
• Time to climb .......................................................... 1.3 minutes
• Distance to climb ............................................................ 2.0 NM
• Fuel to climb ................................................................. 0.3 Gal.
End-of-climb values (SL to 6500 feet):
• Time to climb ........................................................ 10.3 minutes
• Distance to climb .......................................................... 17.0 NM
• Fuel to climb ................................................................. 2.4 Gal.
Climb values (1750 to 6500 feet):
• Time to climb (end 10.3 – start 1.3)......................... 9.0 minutes
• Distance to climb (end 17.0 – start 2.0)........................ 15.0 NM
• Fuel to climb (end 2.4 – start 0.3).................................. 2.1 Gal.
The above values reflect climb for a standard day and are sufficient for
most flight planning. However, further correction for the effect of
temperature on climb can be made. The effect of a temperature on
March 2010
Information Manual 5-7
Cirrus Design Section 5
SR20 Performance Data
climb performance is to increase the time, fuel, and distance to climb
by approximately 10% for each 10 C above ISA. In our example,
using a temperature of ISA + 13 C, the correction to be applied is
13%.
The fuel estimate for climb is:
• Fuel to climb (standard temperature) ............................ 2.1 Gal.
• Increase due to non-standard temp. (2.1 x 0.13) .......... 0.3 Gal.
• Corrected fuel to climb (2.1 + 0.3) ................................. 2.4 Gal.
Procedure for the distance to climb is:
• Distance to climb (standard temperature) .................... 15.0 NM
• Increase due to non-standard temp. (15.0 x 0.13) ........ 1.9 NM
• Corrected distance to climb (15.0 + 1.9) ...................... 16.9 NM
Cruise
The selected cruise altitude should be based upon airplane
performance, trip length, and winds aloft. A typical cruise altitude and
the expected winds aloft are given for this sample problem. Power
selection for cruise should be based upon the cruise performance
characteristics tabulated in Figure 5-16, and the range/endurance
profile presented in Figure 5-17.
The relationship between power and range as well as endurance is
shown in the range/endurance profile chart, Figure 5-17. Note that fuel
economy and range are substantially improved at lower power
settings.
The cruise performance chart, Figure 5-16, is entered at 6000 feet
altitude and 30 C above standard temperature. These values are
conservative for the planned altitude and expected temperature
conditions. The engine speed chosen is 2500 RPM at approximately
55% power, which results in the following:
• Power (MAP = 19.4) ............................................................53%
• True airspeed .............................................................131 Knots
• Cruise fuel flow............................................................. 9.2 GPH
March 2010
5-8 Information Manual
Section 5 Cirrus Design
Performance Data SR20
Fuel Required
The total fuel requirement for the flight may be estimated using the
performance information obtained from Figures 5-15 and 5-16. The
resultant cruise distance is:
• Total distance (from sample problem) ........................ 560.0 NM
• Climb distance (corrected value from climb table)........ 17.0 NM
• Cruise distance (total distance – climb distance) ....... 543.0 NM
Using the predicted true airspeed from the cruise performance table,
Figure 5-16, and applying the expected 10-knot headwind, the ground
speed for cruise is expected to be 121 knots. Therefore, the time
required for the cruise portion of the trip is:
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:西锐20飞机信息手册 SR22 AIRPLANE INFORMATION MANUAL 1148-126(36)