• 热门标签

当前位置: 主页 > 航空资料 > 国外资料 >

时间:2010-06-01 00:28来源:蓝天飞行翻译 作者:admin
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

                                CL = p~2S                         (2.23)
Then,
                         D = ~p V2S[CDO + (%kV T2.)]
                                    1
                          = 2pS[CDOV2+ (%kV V; )]                (2.24)
T
coo
L
AIRCRAFT PERFORMANCE
                  cc
Fig. 23    Variation ofaerodynamic parameters with angle of attack.
Substituting V = u VR, where VR iS given by Eq. (2.15), we obtain
D = 2V~ (.2+ -,,)
Equations (2.7) and (2.8) for static performance can now be expressed as
or
and
73
(2.25)
z W     VI
Em 2g(.2+.,)_Wsiny.0   (2.26)
2zt12 _ ll4 _ t12 _ 2Em U2 sin y = O                       (2.27)
n -cosy =O
(2.28)
Equations (2.27) and (2.28) describe the static performance of the airplane for such
flight conditions as steady level fiight, steady climb, range, and endurance. Before
we discuss such probler:; of powered flights,let us consider the simple power-off
gliding flight,.
2.3  Gliding Flight
         A glideris an unpowered light airplane. The power to overcome the aerodynamic
drag comes at the expense ofits potential energy or its height above the ground.
Because a glider cannot attain the height on its own, it must be towed by another
powered airplane to the desired height and then launched to fly on its own.
    An interesting example of power-off gliding fiight is the return of the Space
Shuttle orbiter from space. The Space Shuttle orbiter glides back to the Earth and
lands on a runway like a conventional airplane.


    !
  .?
    e
 'i
 'r~
  ' ;l

 

    . -.

 


   : /:,

  . .l'

 

   1
   ''

    :.
  ',
   :
  o
 f.
   t
  t
    ::
     .
      .
   <.
     ::
     !
 :l::
     :.
      . :..
    /.
  "..

       /
   :
   :4
    .:
    . l.
  :{
   :*
     ,
   .:
  :,
    .:
        ,
      :.
  ,:
   ..
     l ':
      .
74                PERFORMANCE, STABIU-fY, DYNAMICS, AND CONTROL
Fig. 2-4    Forces acfng on a glider.
      Consider a glider fiying in a vertical plane as shown iri Fig. 2.4. Note that, for
 gliding flight, y  < O. With T : 0, Eqs. (2.7) and (2.8) reduce to the following form:
                                                  D+ W sin y - 0                                     (2.29)
                                                      L - W cos y - 0                                        (2.30)
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:PERFORMANCE, STABILITY, DYNAMICS, AND CONTROL1(44)