Then the phase-variable forms Ap and Bp are given by
Ap = PAP-i
Bp = PB
(6.348)
(6.349)
(6.350)
(6.351)
(6.352)
(6.353)
(6.354)
(6.355)
610 PERFORMANCE, STABILITY, DYNAMICS, AND CONTROL
For the general a\riation airplane, the lateral-directional'controllability matrix is
given by
0 5.0 -4.0 -36.0 162.0
0 3.0 -33.0 212.0 -1664.0
Qc- 3.0 -33.0 212.0 -1664.0 14,376.0
O -5.0 3.0 30.0 -115.0
-5.0 3.0 30.0 . -115.0 511.0
so that
0.0000 -0.6953 -0.0717 -0.0369 -0.2549
-3.8467 0.3386 0.0499 -4.2354 -0.0312
Qci= -1.1859 0.0187 0.0063 -1.2253 -0.0147
-0.7785 0.0926 0.0131 -0.8208 -0.0046
-0.0815 0.0113 0.0016 -0.0867 -0.0003
-0.0815 0.0113 0.0016 -0.0867 -0.0003
-0.0070 -0.0148 -0.0022 0 -0.0014
P - 0.0320 -0.0013 0.0046 0 0.0031
-0.0692 0.0058 -0.0415 0 -0.0241
0.5791 -0.0126 0.3650 0 -0.0039
0.0000 1.0000 0.0000 0-0000 0.0000
0.0000 0.0000 1-0000 0.0000 0.0000
Ap= 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000
0.0000 -0.4253 -48.8614 -14.1354 -9.4685
Bp =
The input with full-state feedback in the transformed system is
U -r(t) - KZ
where K is given by
K-[ki k2 k3 k4 ks)
Then,
Z = (Ap - BpK)Z + Bpr(t)
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:动力机械和机身手册3(89)