• 热门标签

当前位置: 主页 > 航空资料 > 国外资料 >

时间:2010-06-01 00:51来源:蓝天飞行翻译 作者:admin
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

Xi = T~XE
rE = (jriE)-l =
GrE)'
(4.26)
(4.27)
(4.28)
(4.29)
EQUATIONS OF MOTION AND ES11MATION OF STABILITY DERIVATIVES 327
n
Zi
Fig. 4.5    Inertial and nav:igational coordinate system,s.
   Inertial system to navigational system    Assume that the navigational system
OxeYeze is located in the northern hemisphere as shown in Fig. 4.5. Let / denote
the longitude and A the latitude of the origin of the navigational system. The
first step is to do a translation of the inertial axes system so that the origin of
the inertial axes system coincides with that of the navigational system. Then we
have to perform two Euler rotations, r/r = L and then 0 - -(90 + A,). With this.
the inertial axes system Oxiytzi coincides with the navigational system OxeYeze.
The third rotation involving 4 is not necessary. Therefore, Sb = 0. Substituting
these values of the three Euler angles in Eq. (4.22), we obtain
(4.30)
Let the vector Xi denote the position ofa particle P in the inertial frame ofreference
Oxiy,z, as shown in Fig. 4.5. We have
Xi - Xoi + Xei
(4.31)
Note that both vectors Xoi and Xet are having components in the inertial frame of
reference Ox,yizi. Then,
Xei = Xr ~ Xt,/
Xe = TreXer
    = ir/e(Xr - Xoi)
Now vector Xe has components in the OxeYeze system and Tet = ~e)'
(4.32)
(4.33)
(4.34)
                                  cos O cosy                                    cos 0 sin p                       -sin O
r12  ~     sine sin4 cos p - sinVr cos 4    sin ~ sin0 sin 4 +cos p cos4    sin ~ cos 0
                  sin O cos 4 cos p + sin p sin 4     sin ~ sin0 cos 4 - cos p sin0     cos 4 cos0
sin0 cos 4 cos p + sin ~ sin 4]
sin p sin 9 cos ~ - cos p sin 0
                  cos 4 coso                -l
      rcos O cos Vr
= l-"o-::,~
              -sin A cos L    -sin A sin/
-[ie= -sinL cosL _ssl.A,]
               -cos A cos/    -cos A sin /     -
328              PERFORMANCE, STABILITY, DYNAMICS, AND CONTROL
   Inertial system to body axes system    In general, a transformation of this na-
ture will involve all three Euler angles V , O, and 4  Equation (4-22) gives this
transformation matrix T,b as
                     cos8cosqr                      cosOsinp              -sin 6
T/b= sinOsin4cosV,-sinl/cos4 sinysin9sin4+cospcos4 si.,l2:s%]
                     sm0 cos4 cos Vr +sin yr sin 4     sin ~ sin0 cos 4 - cos ~ sin 0     cos 4 co,
              (4.35)
The transformation matrix from body to inertial system is given by
 Tj = (Tib)'
                    coso cos .V     sin0 sin 4 cos ~ -  sin p cos 4     sin 0 cos 4 cos k + sin p su
 _ cosOsinp sinpsinOsin~+cospcos4 sinVsinOcos4-cos,~,,%l
      -sin0       sin4cos0          cos~cos8
              (4.36)
   Wind axes to body axes system.  This transformation involves first rotation
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:PERFORMANCE, STABILITY, DYNAMICS, AND CONTROL2(98)