268 PERFORMANCE, STABILITY, DYNAMICS, AND CONTROL
Consider a strip RT of width dyi on the right wing. Let yh denote the spanwise
coordinate along the quarter chordline and c(yh) denote Lhe local chord normal to
the wing leading edge. The component of force along Ox (the stability axis) for
the righ~wing strip RT is given by
dF = -dL sin(cys - ai) - dD cos(as - ai) (3.286)
- ~dL(as - ui) - dD
(3.287)
Substituting for as - aL from Eq. (3.283) we have
dF : -dLa sec Ap tan A - dD (3.288)
=-;:p, ,s2A(i+ptanA)2[cI.Ra,secAtjtanA
~ p\/o2COS2
+CDO,+CDa., ( +~AA)],(yh)dyh (3.289)
With
aoa' sec A
Ct.R = ~+ p an A (3.290)
where ao = ao(Y) is the sectionallift-curve slope, we have
dF = _;2 p Vo2,OS2 A(l+ p tan A)
x [aoa2 sec2 Ap tan A + CDO.I(1 + B tan A) + CDa.la sec A]
x c(yh) dyh (3.291)
The yawing moment caused by the right wing is given by
NR = -ydF . (3.292)
= g p Vo?- COS2 A(l + p tan A)
x [aoa,2 sec2 Ap tan A + CDO.I(1 + p tan A) + CDar.la sec A]
X [,- (yh)yhdy,r (3.293)
Similarly, the yawing moment caused by the left wing is given by
N, = gp Vo2.OS2 A(l - p tan A)
. X [aoa2 sec2 Ap tan A - CDO.I(1 - p tan A) - CDa.La sec A]
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:PERFORMANCE, STABILITY, DYNAMICS, AND CONTROL2(40)