ab cd
x
m(x1, x2)
x1
Another important consideration is that the multidimensional fuzzy sets should enforce the requirement of Eq. 1 and use the alternate fuzzy logic connectives that are isomorphic with Bayesian probabilistic reasoning mentioned in the previous section. Membership functions defined in such a manner are referred to as a fuzzy partitioning. Fuzzy membership functions based on Gaussian probability density functions can easily be extended to N dimensions. However, they do not exhibit the desirable property of Eq. 1. Trapezoidal membership functions, on the other hand, can be defined with the design constraint of Eq. 1.
Based on the requirements outlined above, we developed a new mechanism for specifying and calculating multidimensional fuzzy membership functions.13-15 Termed hypertrapezoidal fuzzy membership functions (HFMF), this new development is a major advancement in the practical application of fuzzy logic to engineering problems.
As an alternative to trying to define all the corners of N-dimensional fuzzy sets, consider the use of a single point in the state space as the defining parameter of an N-dimensional fuzzy set. Each fuzzy set in a fuzzy partitioning would then have an associated N-dimensional vector which is a typical value for that set. We chose to call such an N-dimensional vector the prototype point. The prototype point, li, for a fuzzy set, Si, with a membership function,
mi(x), satisfies the following equations.
mi ()li = 1
(2)
ml= 0 ji
() .
ji
Figure 14a shows a simple example of a fuzzy partitioning in two dimensions using three prototype points to define three fuzzy sets leaving some area of overlap between the sets.
(a) (b) (c)
A measured value, x, which is an N-dimensional point in the state space of a fuzzy partitioning, has a degree of membership in a fuzzy set based on its Euclidean distance from the prototype point for that set. For example, if x= l1, then m1(x) = 1, m2(x) = 0, and m3(x) = 0. As another example, if xis equidistant from all three prototype points,
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:Flight Segment Identification as a Basis for Pilot Advisory(9)