• 热门标签

当前位置: 主页 > 航空资料 > 航空制造 >

时间:2011-09-14 15:44来源:蓝天飞行翻译 作者:航空
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

B. Procedural FSI
There is another FSI decision (in addition to the state-based decision) that has proven useful. “What flight segment should the pilot be flying?” Knowing the answer to this question is useful, particularly if we compare it with the result of the S-FSI result. But how could one answer this question in software? We can not expect the pilot to input that information – particularly since we want to provide preemptive guidance. We can not rely on the aircraft state since this reflects what the pilot is doing, rather than what the pilot should be doing. Consequently, the FSI logic that makes the decision based (as much as possible) on variables and events that are outside the direct control of the pilot. In other words, the logic for this decision should not rely on the pilot. It should be based on the variables and events that define the flight procedures. We use the term procedural flight segment identification (P-FSI).
As with the state-based FSI, the specific goal is determined by the system designers to match the application. The P-FSI process answers questions like, “What flight procedure should the pilot be executing now?” or “For which phase of flight should the aircraft be configured?” The procedural FSI is different from the state-based FSI. It is based on data or events which are largely outside of the control of the pilot. For example, in the HVO application, the procedures specify when the pilot can enter the SCA, when the pilot can descend from the upper holding pattern, and when the pilot can begin the approach. The conditions include the messages received from the Airport Management Module (AMM), the position of the other aircraft in the pattern, etc. The logic for P-FSI encodes those rules to make a decision about what the pilot should be doing now. While the S-FSI module may detect that the pilot is “In Hold at 3,000,” the P-FSI module may indicate that there is no reason that the pilot should not be “Descending to 2,000.” (Reference Fig. 5.)
C. Flight Segment Display
The question arises, “In addition to the pilot advisory messages, should the identified flight segments be shown directly to the pilot?” On one hand, displaying the FSI results gives pilots the context for the flight – particularly for new procedures like HVO. It may also be helpful in interpreting the pilot advisory messages. For example, if a message is displayed that says “Proceed to CUNAV”, the pilot might understand better the motivation for proceeding to CUNAV, if there was also an indication that the P-FSI is recommending transitioning from “Holding at 2,000” to “On Approach Base Segment.”
The NC&UGP research system included the display of the FSI result – a feature of the display that we termed Procedure Guidance. Performing experiments of FSI display concepts was outside the scope of project. The topic deserves more research. At this time, our implementation displays both the procedural (i.e., “should be in”) and state (i.e., “is operating in”) FSI results in the lower, right-hand corner of the traffic

display as shown in Figure 7. The specific details of the
Figure 7. Example of flight segment display
display depend on whether the procedural and state-based results match or at least follow a reasonable progression. In during SATS HVO operations. this first research implementation, we displayed the State-based Flight Segment Identification (S-FSI) result in large letters as shown in Fig. 8a. If the Procedural Flight Segment Identification (P-FSI) result did not match the S-FSI exactly, we displayed it in smaller letters with the prefix “NEXT:” as shown in Fig. 8b and 8c.
Consider the following three cases and their corresponding examples in Fig. 8.
Case A: Both the procedural (P-FSI) and state-based (S-FSI) results agree. That is, the pilot seems to be performing the procedure that is required at the moment. In this case, the procedural guidance
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:Flight Segment Identification as a Basis for Pilot Advisory(6)