• 热门标签

当前位置: 主页 > 航空资料 > 航空制造 >

时间:2011-09-14 15:44来源:蓝天飞行翻译 作者:航空
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

Providing in-flight pilot advising or aviation training software are worthy goals in themselves. But there is a problem looming in the National Airspace System that can also be addressed by “smarter” avionics. Many observers believe that the NAS is not prepared for the expected rise in air traffic over the next two decades. That rise is due to two factors – an increase in airline business and an increase in the number of smaller aircraft. Several companies are developing Very Light Jets and Personal Air Vehicles. These smaller vehicles are expected to place an additional strain on the NAS that can not be easily addressed with additional infrastructure. The solution may be to better utilize “community airports.”
Why are “community airports” important? As shown in Fig. 1, Airport Accessibility only 22 percent of the population
Percentage of population within 30 minutes drive of an airport.
of the United States lives within 30 minutes of a major hub airport, such as Chicago O'Hare International Airport or the Dallas/Fort Worth International Airport. Forty-one percent live within 30 minutes of a regional airport such as Bryan-College Station's Easterwood Airport. But 93 percent of the people in the United States live near a small, community airport. These

Figure 1. Airport Accessibility.
community airports currently serve a relatively small number of general aviation pilots. While the major hubs are straining under the load of increasing air travel, community airports are underutilized. Community airports have the potential to become a huge national asset, if we can overcome the barriers to personal air transportation.
One of the barriers to personal air transportation is the lack of full air traffic control infrastructure at the community airports. The High Volume Operations (HVO) concept was developed by NASA researchers on the Small Aircraft Transportation System (SATS) research project to address this need. The concept is intended to open up consistent (i.e., all-weather) access to the large number of community airports across the country. But, rather than duplicating the infrastructure that exists at larger airports, HVO uses a combination of ground sequencing software, new flight procedures, and on-board pilot advisory software. One researcher describes HVO as follows:
A concept for multiple operations during Instrument Meteorological Conditions (IMC) at non-tower, non-radar airports is
described. The objective is to provide an automated service which will support separation assurance for aircraft operating
in the airport airspace. This type of service will enable the use of a large number of airfields which currently have limited
use in IMC. The service must be provided with minimal infrastructure and at low cost.2
Researchers expect the aviation industry to rely on “automated services” to grow the NAS. The “automated services” exist both on the ground and in the aircraft.
The primary focus of this paper is on using artificial intelligence to enable new types of flight procedures that improve the ability of National Airspace Systems to accommodate the expected growth in air traffic. For the authors, artificial intelligence is a general term that refers to embedding into systems the knowledge and logic to perform functions that are generally performed by a human today. For example, humans think about their flights in specific stages. That is, pilots maintain a mental model of their flight as a series of flight segments. It would be helpful, for reasons discussed below, if the onboard software similarly maintained a model of the segments of a flight and tracked the aircraft as it operated in and transitioned between those flight segments. We call that software process, Flight Segment Identification (FSI). FSI provides context for the avionics to provide pilot advisories, information and display management.

II. Pilot Advisory Systems
A. Automated Safety and Training Avionics (ASTRA)
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:Flight Segment Identification as a Basis for Pilot Advisory(2)