曝光台 注意防骗
网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者
15.1.1 Structure of the control-law simulation models . . . . . . . . . . 261
15.1.2 SIMULINK implementation of the Pitch Attitude Hold mode . . 262
15.1.3 SIMULINK implementation of the Roll Attitude Hold mode . . . 263
CONTENTS v
15.1.4 Using the PAH and RAH simulation models in practice . . . . . 266
15.2 Integral autopilot simulation model . . . . . . . . . . . . . . . . . . . . 268
15.2.1 General structure of the autopilot simulation model . . . . . . . 268
15.2.2 Implementation of the symmetrical autopilot modes . . . . . . 271
15.2.3 Implementation of the asymmetrical autopilot modes . . . . . . 272
15.2.4 Implementation of the Mode Controller . . . . . . . . . . . . . . 273
15.2.5 Implementation of atmospheric disturbances . . . . . . . . . . . 275
15.2.6 Blocks to obtain small-deviation signals from the aircraft model 275
15.2.7 Additional blocks on the input side of the aircraft model . . . . 276
15.2.8 Additional blocks on the output side of the aircraft model . . . 278
15.3 Performing simulations with the autopilot models . . . . . . . . . . . . 279
15.3.1 Autopilot model initialization . . . . . . . . . . . . . . . . . . . . 279
15.3.2 Examples of non-linear autopilot simulations . . . . . . . . . . . 281
A Symbols and definitions 285
A.1 List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
A.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
A.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
A.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
A.5 Indices and subscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
A.6 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
A.7 Reference frames and sign conventions . . . . . . . . . . . . . . . . . . 291
A.7.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
A.7.2 Summary of the application of the reference systems . . . . . . 292
A.7.3 Relationships between the reference frames . . . . . . . . . . . . 293
A.7.4 Sign conventions for deflections of control surfaces . . . . . . . 297
B Beaver model parameters 299
B.1 General aircraft data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
B.2 Flight envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
B.3 Aerodynamic and engine model parameters . . . . . . . . . . . . . . . 300
C Data structure of the FDC model parameters 305
C.1 Defining the model parameters in the MATLAB workspace . . . . . . . 305
C.2 Definition of the parameter matrices for the Beaver model . . . . . . . 306
D Data structure of the FDC model output signals 309
D.1 Aircraft model signal logging . . . . . . . . . . . . . . . . . . . . . . . . 309
D.2 Radio navigation signal logging . . . . . . . . . . . . . . . . . . . . . . . 310
E Definitions of variables and acronyms from FDC 1.4 313
E.1 Variables and acronyms from the graphical models . . . . . . . . . . . 313
E.1.1 Aircraft model (system Beaver) . . . . . . . . . . . . . . . . . . . 313
E.1.2 Autopilot models (systems APILOT1 to APILOT3) . . . . . . . . 316
E.1.3 Radio-navigation models (library NAVLIB) . . . . . . . . . . . . 318
E.1.4 Wind and turbulence models (library WINDLIB) . . . . . . . . . 319
F The Open Software License v. 2.1 321
vi CONTENTS
G Common Documentation License 325
Bibliography 329
Chapter 1
Flight control system development
During the last decades, active flight control technology has dramatically changed
the way aircraft are designed and flown. Flight control systems with mechanical
linkages have been replaced by full authority, ‘fly-by-wire’, digital control systems.
As a consequence, the flying qualities of modern aircraft are largely determined by a
set of control laws in the heart of a computer system.
Modern computer assisted control system design (CACSD) software provides a
wide variety of user-friendly analytical tools that can assist in flight control system
(FCS) design and analysis. A typical example is the MATLAB / SIMULINK software
environment from The Mathworks, which offers advanced modelling and simulation
capabilities and easy access to control system design tools. The Mathworks and
other vendors offer several specialized toolboxes for a wide range of control system
design methods.
A prerequisite for successful FCS design is the availability of sophisticated mathematical
models of the airplane, the environment it has to operate in, and elements
from the control system itself. The FDC toolbox tries to offer such models for the
MATLAB / SIMULINK environment, and several tools and utilities to access those
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:
FDC 1.4 – A SIMULINK Toolbox for Flight Dynamics and Contro(4)