a13 :=
X -.AX + BU
ali a12 013 /
A= a:,i a22 a2
a31 a32 a33 t
a41 a42 a43 t:
aii ==
Cxu + gl Czu
mi
a12 -
Cxq Cl + €i (mi + Czq Cl)
Ttl I + CzqCI
a23 - -
mi - Czcr Cl
Cmu + g2Czu
a31 :-. -
Iyl
a33 -
Cxa, + gl Cza
a22 - -
m]
a24 - -
mi
mi
Czct
- Cza CI
Cz8
- CI Czci,
Cmcr + 92Cza
a32 - -
l,,l
Cmq CI + g2(1Tll + Czq Cl)
2m
mi ::: -
'I p Uo S
For free response, U - O so that
a34 = g-IC
CI = 2U
1),
/),l = ~p U2Sc
X - AX
A solution to Eq. (6.13) can be obtained in the usual way by assuming
X = XoeA,
(6.12)
(6.13)
(6.14)
l:l
mc
Cx0 + gl Cz0
a14 - -
mi
a21= Cz"
mi - Czacl
041-0 a42-0 a43-1 a14-0
bi=Cx8,+91Cz8, b2-' Cz8,
m] mi - ci Czd
b3 = Cnae + g2C28e
y b4 -0
Cx&ci
gl := -
mi - Czotci
Cmd CI
g2 -. ~
mi - CZaCl
540
so that
and
or
PERFORMANCE, STABILITY, DYNAMICS, AND CONTROL
X = XoleA'
Xt,AeAr _ AXoeXr -: O
(AI - A)Xo = O
where I is the identity matrix
100
000
For nontrivial solutions, the determinant of (AI - A) must be zero
IAI - Al = 0
(6.15)
(6.16)
(6.17)
(6.18)
(6.19)
An expansion of the determinant in Eq. (6.19) results in a fourth-order algebraic
equation of the form
where
A8A4 + B8A3 + C8A2 + D8A + E8 - O
A8 = mil).i(mi - CzaCI)
(6.20)
(6.21)
Ba = rTIi (-l}.i Czcr - Cmq CI [lTl.l - Cza CIl - IT11Cma,CI)
- Cx,,l).i(mi - CzaCI) - Cxd,CICzulyl (6.22)
C8 = ITI,I (Cza Cmq Cl - tTZl Cma! - Czq CmerC21)
- Cxu(-Iyl Czat - Cmq CI UTI1 - Cza CIl - itTIl Cma,CI )
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:PERFORMANCE, STABILITY, DYNAMICS, AND CONTROL3(93)