• 热门标签

当前位置: 主页 > 航空资料 > 国外资料 >

时间:2010-06-01 00:54来源:蓝天飞行翻译 作者:admin
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

If this identity is to hold for fdl arbitrary values of x(0), we must have
                                                     <P(t) - AtP(t) : 0                                     (5.181)
This shows that the state transition matrix q>(t) is a solution to the homogeneous
state Eq. (5.176).
   Determination of state transition matrix.   Take the Laplace transformation
of Eq. (5.176),
sx(s) - x(0) : Ax(s)
(5.182)
                                          x(s) = (sl - A)-lx(0)                             (5.183)
Here, we assume that (sl - A)-] exists,i.e., (sl - A) is nonsingular. Then,
                                   x(t) = L-l[(sl - A)-llx(0)                       (5.184)
for t > O. Comparing Eqs. (5.184) and (5.178), we get
                                      q>(t) = L-l[(sl - A)-l]                          (5.185)
Let
                                       x(t) = eArx(0)                             (5.186)
The matrix exponentialis given by
                [ntn
                       eA' =I+At+ A2   +...+ A~+--              (5.187)
rr
j
 L
 s
 t
;t
 ain
 a2n
 a3n
            N
            .
 ann
510          PERFORMANCE, STABILITY, DYNAMICS, AND CONTROL
where I is the identity matrix. We note that Eq. (5.186) satisfies the homogeneous
state Eq. (5.176). Hence,
                  A2t2       A t
(p(t) = eAr = I+At +   2~ + " '+ r7r +- "            (5.188)
Using this, the solution of the complete nonhomogeneous state Eq. (5.171) can be
expressed as1.3
and the output
x(t) = Q(t)x(0) + [,' <P(t - r)Bu(r)dr
(5.189)
y(t) = C [q>(,)x(0) +  [r q>(t _ r)B.(,) d,] +Du                  (5.190)
   The integral in Eq. (5.189) is the convolution integral, which was introduced
earlier in Eq. (5.39). The first term on the right-hand side of Eq. (5.189) represents
the solution to the homogeneous part of the state equation and gives the free (tran-
sien0 response. The second term represents Lhe forced response and is independent
of the initial conditions x(0).
   Properties of state transition matrix.  The state transition matrix cP(t) has
the following properties. The proof of these identities is left as an exercise to the
reader.
     q>(0) -- 1
<p-l(t) = q>(-t)
<P(t2 - tI)Q(tl - t0) : <p(t2 - t0)
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:PERFORMANCE, STABILITY, DYNAMICS, AND CONTROL3(73)