• 热门标签

当前位置: 主页 > 国内新闻 >

时间:2024-01-22 19:06来源:未知 作者:航空
曝光台 注意防骗 网曝天猫店富美金盛家居专营店坑蒙拐骗欺诈消费者

◉ 在高温应力释放过程中从大约1050MPa降至950MPa

(= 根据AMS 2801在700-800°C退火)

◉ 高温HIP>900°C从大约1050MPa降至900MPa

(根据ASTM F2924-14,此时发生马氏体完全分解。)

 

低温HIP的最小化软化

Quintus与合作伙伴[8,9]一起开发、评估并实现了一种新型低温HIP循环,该循环针对非常细小的“打印”的L-PBF Ti6Al4V微观组织进行了优化。其基本概念是通过尽可能降低HIP温度来实现极大程度的降低高温软化,并通过增加压力来补偿温度的降低。

T.Kosonen [8]证实,这种新的低温HIP工艺可以实现与在800°C(950MPa)高温下进行应力释放处理大致相同的屈服强度,但结合缺陷致密化后随之而来的是高周疲劳抗性(HCF)。在应力幅值为750MPa的测试中发现[1],经820°C的低温HIP工艺处理后,L-PBF Ti6Al4V在N=107时的高周疲劳抗性均达到了理论最大值790MPa,但裕值很窄。

如果允许断裂延伸率<12%,使用最大含氧量(2000µg>1000MPa的更高水平。

图5a:L-PBF Ti6Al4V的打印态组织,显示为几乎100%针状 α’ 马氏体和一些纳米级残留β


图5b:820°C低温HIP后的微观组织,显示为α’分解为细小的片状α和α+β相


虽然缺乏实验证据,但从图5a和图5b的对比可以看出,压力从100MPa升到200MPa,不仅为了实现孔隙的完全致密化,补偿了温度从920°C降到800°C;而且根据勒夏特列原理,相较于bcc结构的β相,稳定了更多的体积的更小的hcp α相,从而有助于在HIP过程中保持细小的层状组织。

 

高压热处理可同时进行Ti6Al4V的HIP和STA热处理

有时也会无法成功进行低温HIP,例如典型缺陷或最大缺陷尺寸大于300µm [13]时。这不仅在铸件中是如此,在使用所谓的“高速”构建参数时也是如此。D. Herzog发现当采用高速打印工艺时,当体积能量减少超过1.7倍,“打印”的密度有显著下降,并伴随着缺陷的大小从<100µm跳到数百微米[14],这使低温HIP工艺不能完全致密化。

针对这类应用,Quintus开发了高压热处理(HPHT)工艺,实质上是在HIP炉中加入高压气淬(HPGQ)装置。HPHT与传统的HPGQ的区别在于氩冷却气体在大约1500bar和15bar时的密度、速度、热容和热导率有所不同。简化对流换热系数α与冷却气体的Prandtl和Reynolds数的相关关系(如Wakao或Gnielinski关联式),可以认为HPHT下的冷却气体密度约是HPGQ的100倍,而(强制对流冷却气流)气体速度则相反。

结果表明,在1500bar HPHT炉和15bar HPGQ炉中,气淬速率相似,为>1000 K/min,传热系数α >500 W/(m2K),使得同时进行Ti6Al4V的HIP和STA(固溶处理和时效)热处理成为可能。对于Ti6Al4V,AMS2801指定了STA使用水或聚合物淬火,这与A. Rottstegge发现的HPHT淬火强度介于油淬和水淬之间的结果很吻合[15]。

 

HPHT(HIP+STA)工艺能通过两种抵消的硬化机制来补偿通常HIP温度范围在895-955°C时由于马氏体分解和初生α片层粗化引起的材料软化:

◉ 快速冷却速率导致880°C以上的温度下形成的β相转变成α’/α”马氏体和纳米级的双层状α+β组织,而不是较软的平衡态微观组织。
 
中国航空网 www.aero.cn
航空翻译 www.aviation.cn
本文链接地址:Quintus高压热处理工艺可支持HIP和STA热处理同时进行,助力提高增材制造钛合金Ti6Al4V的疲劳强度(2)